Skip to main content

Advertisement

Log in

Platelet Activating Factor in Heart Failure: Potential Role in Disease Progression and Novel Target for Therapy

  • Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors (S.D. Katz, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) is a complex syndrome with cardiac, renal, neurohormonal and sympathetic nervous system’s manifestations, the pathogenesis of which among others is connected to inflammation. PAF has local and systemic effects pertaining to HF progression since it causes a negative inotropic effect, it induces arrhythmias, it induces apoptosis and it is involved in inflammation and atherosclerosis. In the present review the role of PAF in HF will be thoroughly presented along with the relevant data on PAF enzymes and the potential role of PAF metabolic circuit as a novel pharmacological target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847. This publication is of major clinical importance since it presents the guidelines for diagnosis and treatment of heart failure.

    Article  PubMed  Google Scholar 

  2. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8:30–41.

    Article  PubMed  Google Scholar 

  3. Dixon DL, Griggs KM, Bersten AD, De Pasquale CG. Systemic inflammation and cell activation reflects morbidity in chronic heart failure. Cytokine. 2011;56:593–9.

    Article  PubMed  Google Scholar 

  4. Liu L, Zhao SP. The changes of circulating tumor necrosis factor levels in patients with congestive heart failure influenced by therapy. Int J Cardiol. 1999;69:77–82.

    Article  PubMed  Google Scholar 

  5. Demopoulos CA, Pinckard RN, Hanahan DJ. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979;254:9355–8.

    PubMed  Google Scholar 

  6. Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000;80:1669–99.

    PubMed  Google Scholar 

  7. Demopoulos C, Karantonis H, Antonopoulou S. Platelet activating factor - a molecular link between atherosclerosis theories. Eur J Lipid Sci Technol. 2003;105:705–16.

    Article  Google Scholar 

  8. Zhao D, Chu WF, Wu L, et al. PAF exerts a direct apoptotic effect on the rat H9c2 cardiomyocytes in Ca2+-dependent manner. Int J Cardiol. 2010;143:86–93.

    Article  PubMed  Google Scholar 

  9. Detopoulou P, Nomikos T, Fragopoulou E, et al. Platelet activating factor (PAF) and activity of its biosynthetic and catabolic enzymes in blood and leukocytes of male patients with newly diagnosed heart failure. Clin Biochem. 2009;42:44–9.

    Article  PubMed  Google Scholar 

  10. • Detopoulou P, Fragopoulou E, Nomikos T, et al. Baseline and 6-week Follow-Up Levels of PAF and Activity of its Metabolic Enzymes in Patients With Heart Failure and Healthy Volunteers--A Pilot Study. Angiology 2012. doi:10.1177/0003319712458536. This publication presents the whole metabolic circuit of PAF in heart failure patients along with the progression of the disease.

  11. Snyder F. Platelet-activating factor and its analogs: metabolic pathways and related intracellular processes. Biochim Biophys Acta. 1995;1254:231–49.

    Article  PubMed  Google Scholar 

  12. Shindou H, Hishikawa D, Nakanishi H, et al. A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells: cloning and characterization of acetyl-CoA:lyso-PAF acetyltransferase. J Biol Chem. 2007;282:6532–9.

    Article  PubMed  Google Scholar 

  13. Harayama T, Shindou H, Ogasawara R, Suwabe A, Shimizu T. Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor. J Biol Chem. 2008;283:11097–106.

    Article  PubMed  Google Scholar 

  14. Snyder F. CDP-choline:alkylacetylglycerol cholinephosphotransferase catalyzes the final step in the de novo synthesis of platelet-activating factor. Biochim Biophys Acta. 1997;4:111–6.

    Google Scholar 

  15. Stafforini DM. Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc Drugs Ther. 2009;23:73–83.

    Article  PubMed  Google Scholar 

  16. Burghardt C, Janero D. The anoxic rat-heart myocyte produces and releases platelet activating (PAF) as a component of its ischemia-like pathology. J Mol Cell Cardiol. 1987;19:pS69.

    Google Scholar 

  17. Levi R, Burke JA, Guo ZG, et al. Acetyl glyceryl ether phosphorylcholine (AGEPC). A putative mediator of cardiac anaphylaxis in the guinea pig. Circ Res. 1984;54:117–24.

    Article  PubMed  Google Scholar 

  18. Annable C, McManus L, Carey K, Pinckard R. Isolation of platelet-activating factor (PAF) from ischemic baboon myocardium. Fed Proc. 1985;44:1271.

    Google Scholar 

  19. Montrucchio G, Alloatti G, Tetta C, et al. Release of platelet-activating factor from ischemic-reperfused rabbit heart. Am J Physiol. 1989;256:H1236–46.

    PubMed  Google Scholar 

  20. Janero DR, Burghardt C. Production and release of platelet-activating factor by the injured heart-muscle cell (cardiomyocyte). Res Commun Chem Pathol Pharmacol. 1990;67:201–18.

    PubMed  Google Scholar 

  21. Stahl GL, Lefer DJ, Lefer AM. PAF-acether induced cardiac dysfunction in the isolated perfused guinea pig heart. Naunyn Schmiedeberg’s Arch Pharmacol. 1987;336:459–63.

    Article  Google Scholar 

  22. Kenzora JL, Perez JE, Bergmann SR, Lange LG. Effects of acetyl glyceryl ether of phosphorylcholine (platelet activating factor) on ventricular preload, afterload, and contractility in dogs. J Clin Invest. 1984;74:1193–203.

    Article  PubMed  Google Scholar 

  23. Loucks EB, Godin DV, Walley KR, et al. Role of platelet activating factor in cardiac dysfunction, apoptosis and nitric oxide synthase mRNA expression in the ischemic-reperfused rabbit heart. Can J Cardiol. 2003;19:267–74.

    PubMed  Google Scholar 

  24. Kecskemeti V, Balogh I. Cardiac ultrastructural effects of the platelet-activating factor and its antagonist BN 52021. Exp Toxicol Pathol. 1995;47:463–70.

    Article  PubMed  Google Scholar 

  25. Evangelou A, Kalfakakou V, Benveniste J, Arnoux B. Inhibition of PAF-acether effects on isolated guinea pig hearts by zinc ions (Zn2+). Biol Trace Elem Res. 1995;50:43–55.

    Article  PubMed  Google Scholar 

  26. Camussi G, Alloatti G, Montrucchio G, Meda M, Emanuelli G. Effect of platelet activating factor on guinea-pig papillary muscle. Experientia. 1984;40:697–9.

    Article  PubMed  Google Scholar 

  27. Wahler GM, Coyle DE, Sperelakis N. Effects of platelet-activating factor on single potassium channel currents in guinea pig ventricular myocytes. Mol Cell Biochem. 1990;93:69–76.

    Article  PubMed  Google Scholar 

  28. Massey CV, Kohout TA, Gaa ST, Lederer WJ, Rogers TB. Molecular and cellular actions of platelet-activating factor in rat heart cells. J Clin Invest. 1991;88:2106–16.

    Article  PubMed  Google Scholar 

  29. Alloatti G, Levi R, Malan D, et al. Phosphoinositide 3-kinase gamma-deficient hearts are protected from the PAF-dependent depression of cardiac contractility. Cardiovasc Res. 2003;60:242–9.

    Article  PubMed  Google Scholar 

  30. Church DJ, van der Bent V, Vallotton MB, Capponi AM, Lang U. Calcium influx in platelet activating factor-induced atrial natriuretic peptide release in rat cardiomyocytes. Am J Physiol. 1994;266:E403–9.

    PubMed  Google Scholar 

  31. Gupta JB, Prasad M, Kalra J, Prasad K. Platelet-activating-factor-induced changes in cardiovascular function and oxyradical status of myocardium in presence of the PAF antagonist CV-6209. Angiology. 1994;45:25–36.

    Article  PubMed  Google Scholar 

  32. Montrucchio G, Alloatti G, Mariano F, et al. Role of platelet-activating factor in polymorphonuclear neutrophil recruitment in reperfused ischemic rabbit heart. Am J Pathol. 1993;142:471–80.

    PubMed  Google Scholar 

  33. Tselepis AD, Evangelou A, Tsoukatos D, Demopoulos CA, Kapoulas VM. Electrocardiographic alterations induced by AGEPC in Wistar rats in relation to its hypotensive and hematologic effects. Comp Biochem Physiol C. 1987;87:41–6.

    Article  PubMed  Google Scholar 

  34. Robertson DA, Wang DY, Lee CO, Levi R. Negative inotropic effect of platelet-activating factor: association with a decrease in intracellular sodium activity. J Pharmacol Exp Ther. 1988;245:124–8.

    PubMed  Google Scholar 

  35. Montrucchio G, Alloatti G, Mariano F, Tetta C, Emanuelli G, et al. Cardiovascular alterations in the rabbit infused with platelet activating factor (PAF): effect of kadsurenone, a PAF-receptor antagonist. Int J Tissue React. 1986;8:497–504.

    PubMed  Google Scholar 

  36. Hoffman BF, Guo SD, Feinmark SJ. Arrhythmias caused by platelet activating factor. J Cardiovasc Electrophysiol. 1996;7:120–33.

    Article  PubMed  Google Scholar 

  37. Barbuti A, Ishii S, Shimizu T, Robinson RB, Feinmark SJ. Block of the background K(+) channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. Am J Physiol Heart Circ Physiol. 2002;282:H2024–30.

    PubMed  Google Scholar 

  38. Nakaya H, Tohse N. Electrophysiological effects of acetyl glyceryl ether phosphorylcholine on cardiac tissues: comparison with lysophosphatidylcholine and long chain acyl carnitine. Br J Pharmacol. 1986;89:749–57.

    Article  PubMed  Google Scholar 

  39. Mest HJ, Riedel A, Braquet P, Meyer E. The arrhythmogenic effect of platelet activating factor (PAF) is inhibited by PAF antagonist and by substances influencing eicosanoids. Biomed Biochim Acta. 1988;47:S219–23.

    PubMed  Google Scholar 

  40. Cakici I, Mataraci N, Ersoy S, et al. Effects of platelet-activating factor antagonists WEB 2086 and BN 50730 on digoxin-induced arrhythmias. Pharmacol Toxicol. 1995;76:343–7.

    Article  PubMed  Google Scholar 

  41. Guillon JM, Rochette L, Baranes J. Effects of Ginkgo biloba extract on 2 models of experimental myocardial ischemia. Presse Med. 1986;15:1516–9.

    PubMed  Google Scholar 

  42. Riedel A, Mest HJ. The effect of PAF (platelet-activating factor) on experimental cardiac arrhythmias and its inhibition by substances influencing arachidonic acid metabolites. Prostaglandins Leukot Med. 1987;28:103–9.

    Article  PubMed  Google Scholar 

  43. Muirhead EE, Byers LW, Desiderio DM, Brooks B, Brosius WM. Antihypertensive lipids from the kidney: alkyl ether analogs of phosphatidylcholine. Fed Proc. 1981;40:2285–90.

    PubMed  Google Scholar 

  44. •• Penna C, Bassino E, Alloatti G. Platelet activating factor: the good and the bad in the ischemic/reperfused heart. Exp Biol Med (Maywood). 2011;236:390–401. The present review provides a thorough presentation of the role of PAF in ischemia/ reperfusion with a plethora of experimental examples.

    Article  Google Scholar 

  45. Blank ML, Hall MN, Cress EA, Snyder F. Inactivation of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine by a plasma acetylhydrolase: higher activities in hypertensive rats. Biochem Biophys Res Commun. 1983;113:666–71.

    Article  PubMed  Google Scholar 

  46. McGowan HM, Vandongen R, Kelly LD, Hill KJ. Increased levels of platelet-activating factor (1-O-alkyl-2-acetylglycerophosphocholine) in blood after reversal of renal clip hypertension in the rat. Clin Sci (Lond). 1988;74:393–6.

    Google Scholar 

  47. Eldar M, Lysko PG, Schulhoff N, et al. Effects of coronary angioplasty on plasma platelet-activating factor in man. J Lipid Mediat. 1992;5:313–9.

    PubMed  Google Scholar 

  48. Piper PJ, Stewart AG. Coronary vasoconstriction in the rat, isolated perfused heart induced by platelet-activating factor is mediated by leukotriene C4. Br J Pharmacol. 1986;88:595–605.

    Article  PubMed  Google Scholar 

  49. Piper PJ, Stewart AG. Antagonism of vasoconstriction induced by platelet-activating factor in guinea-pig perfused hearts by selective platelet-activating factor receptor antagonists. Br J Pharmacol. 1987;90:771–83.

    Article  PubMed  Google Scholar 

  50. Levi M, van der Poll T, Schultz M. Infection and inflammation as risk factors for thrombosis and atherosclerosis. Semin Thromb Hemost. 2012;38:506–14.

    Article  PubMed  Google Scholar 

  51. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM. Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Clin Lab Sci. 2003;40:643–72.

    Article  PubMed  Google Scholar 

  52. Stewart AG, Dubbin PN, Harris T, Dusting GJ. Platelet-activating factor may act as a second messenger in the release of eicosanoids and superoxide anions from leukocytes and endothelial cells. Proc Natl Acad Sci U S A. 1990;87:3215–9.

    Article  PubMed  Google Scholar 

  53. Rouis M, Nigon F, Chapman MJ. Platelet activating factor is a potent stimulant of the production of active oxygen species by human monocyte-derived macrophages. Biochem Biophys Res Commun. 1988;156:1293–301.

    Article  PubMed  Google Scholar 

  54. Gaut JP, Heinecke JW. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc Med. 2001;11:103–12.

    Article  PubMed  Google Scholar 

  55. Liapikos TA, Antonopoulou S, Karabina SP, et al. Platelet-activating factor formation during oxidative modification of low-density lipoprotein when PAF-acetylhydrolase has been inactivated. Biochim Biophys Acta. 1994;1212:353–60.

    Article  PubMed  Google Scholar 

  56. Rios FJ, Gidlund M, Jancar S. Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages. Cell Physiol Biochem. 2011;27:363–72.

    Article  PubMed  Google Scholar 

  57. Beaudeux JL, Said T, Ninio E, et al. Activation of PAF receptor by oxidised LDL in human monocytes stimulates chemokine releases but not urokinase-type plasminogen activator expression. Clin Chim Acta. 2004;344:163–71.

    Article  PubMed  Google Scholar 

  58. Prescott SM, McIntyre TM, Zimmerman GA, Stafforini DM. Inflammation as an early component of atherosclerosis and vascular damage–a role for P-selectin and platelet-activating factor. Jpn Circ J. 1996;60:137–41.

    Article  PubMed  Google Scholar 

  59. Handley DA, Arbeeny CM, Lee ML, Van Valen RG, Saunders RN. Effect of platelet activating factor on endothelial permeability to plasma macromolecules. Immunopharmacology. 1984;8:137–42.

    Article  PubMed  Google Scholar 

  60. Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J Clin Invest. 1995;95:2297–303.

    Article  PubMed  Google Scholar 

  61. Takahashi T, Nishizawa Y, Hato F, et al. Neutrophil-activating activity and platelet-activating factor synthesis in cytokine-stimulated endothelial cells: reduced activity in growth-arrested cells. Microvasc Res. 2006;73:29–34.

    Article  PubMed  Google Scholar 

  62. McManus LM, Hanahan DJ, Pinckard RN. Human platelet stimulation by acetyl glyceryl ether phosphorylcholine. J Clin Invest. 1981;67:903–6.

    Article  PubMed  Google Scholar 

  63. Klinger MH. Platelets and inflammation. Anat Embryol (Berl). 1997;196:1–11.

    Article  Google Scholar 

  64. Rouis M, Nigon F, Lafuma C, Hornebeck W, Chapman MJ. Expression of elastase activity by human monocyte-macrophages is modulated by cellular cholesterol content, inflammatory mediators, and phorbol myristate acetate. Arteriosclerosis. 1990;10:246–55.

    Article  PubMed  Google Scholar 

  65. Antonopoulou S, Nomikos T, Karantonis HC, Fragopoulou E, Demopoulos CA. PAF, a potent lipid mediator In: Bioactive Phospholipids. Role in Inflammation and Atheroslerosis. Edited by Tselepis AD. India: Research Signpost; 2009:85–134.

  66. Feliste R, Perret B, Braquet P, Chap H. Protective effect of BN 52021, a specific antagonist of platelet-activating factor (PAF-acether) against diet-induced cholesteryl ester deposition in rabbit aorta. Atherosclerosis. 1989;78:151–8.

    Article  PubMed  Google Scholar 

  67. Hilfiker-Kleiner D, Landmesser U, Drexler H. Molecular mechanisms in heart failure: focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis. J Am Coll Cardiol. 2006;48:56–66.

    Article  Google Scholar 

  68. Sadat U. Signaling pathways of cardioprotective ischemic preconditioning. Int J Surg. 2009;7:490–8.

    Article  PubMed  Google Scholar 

  69. Leary PJ, Rajasekaran S, Morrison RR, et al. A cardioprotective role for platelet-activating factor through NOS-dependent S-nitrosylation. Am J Physiol Heart Circ Physiol. 2008;294:H2775–84.

    Article  PubMed  Google Scholar 

  70. Valone FH, Epstein LB. Biphasic platelet-activating factor synthesis by human monocytes stimulated with IL-1-beta, tumor necrosis factor, or IFN-gamma. J Immunol. 1988;141:3945–50.

    PubMed  Google Scholar 

  71. Zhang GQ, Tao YK, Li XL, et al. Investigation of platelet activating factor (PAF) in acute myocardial infarction. Chin J Emerg Med. 2010;19:1304–7.

    Google Scholar 

  72. Szmit S, Jank M, Maciejewski H, et al. Gene expression profiling in peripheral blood nuclear cells in patients with refractory ischaemic end-stage heart failure. J Appl Genet. 2010;51:353–68.

    Article  PubMed  Google Scholar 

  73. Quarck R, De Geest B, Stengel D, et al. Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2001;103:2495–500.

    Article  PubMed  Google Scholar 

  74. •• The Lp-PLA2 Studies Collaboration. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375:1536–44. The present paper presents the combined results of several large studies concerning the role of Lp-PLA2 in cardiovascular disease.

    Article  Google Scholar 

  75. Persson M, Hedblad B, Nelson JJ, Berglund G. Elevated Lp-PLA2 levels add prognostic information to the metabolic syndrome on incidence of cardiovascular events among middle-aged nondiabetic subjects. Arterioscler Thromb Vasc Biol. 2007;27:1411–6.

    Article  PubMed  Google Scholar 

  76. Mohler 3rd ER, Ballantyne CM, Davidson MH, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2008;51:1632–41.

    Article  PubMed  Google Scholar 

  77. Serruys PW, Garcia-Garcia HM, Buszman P, et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008;118:1172–82.

    Article  PubMed  Google Scholar 

  78. Wang WY, Zhang J, Wu WY, et al. Inhibition of lipoprotein-associated phospholipase A2 ameliorates inflammation and decreases atherosclerotic plaque formation in ApoE-deficient mice. PLoS One. 2011;6:e23425.

    Article  PubMed  Google Scholar 

  79. Hu MM, Zhang J, Wang WY, et al. The inhibition of lipoprotein-associated phospholipase A2 exerts beneficial effects against atherosclerosis in LDLR-deficient mice. Acta Pharmacol Sin. 2011;32:1253–8.

    PubMed  Google Scholar 

  80. White H, Held C, Stewart R, et al. Study design and rationale for the clinical outcomes of the STABILITY Trial (STabilization of Atherosclerotic plaque By Initiation of darapLadIb TherapY) comparing darapladib versus placebo in patients with coronary heart disease. Am Heart J. 2010;160:655–61.

    Article  PubMed  Google Scholar 

  81. van Vark LC, Kardys I, Bleumink GS, et al. Lipoprotein-associated phospholipase A2 activity and risk of heart failure: the Rotterdam study. Eur Heart J. 2006;27:2346–52.

    Article  PubMed  Google Scholar 

  82. Suzuki T, Solomon C, Jenny NS, et al. Lipoprotein-associated phospholipase A(2) and risk of congestive heart failure in older adults: the Cardiovascular Health Study. Circ Heart Fail. 2009;2:429–36.

    Article  PubMed  Google Scholar 

  83. Gerber Y, Dunlay SM, Jaffe AS, et al. Plasma lipoprotein-associated phospholipase A2 levels in heart failure: association with mortality in the community. Atherosclerosis. 2009;203:593–8.

    Article  PubMed  Google Scholar 

  84. Moldoveanu E, Serban M, Marta DS, Serban I, Huica R. Lipoprotein-associated phospholipase A2 activity in patients with preserved left ventricular ejection fraction. Biomarkers. 2011;16:587–9.

    Article  PubMed  Google Scholar 

  85. Charniot JC, Khani-Bittar R, Albertini JP, et al. Interpretation of lipoprotein-associated phospholipase A2 levels is influenced by cardiac disease, comorbidities, extension of atherosclerosis and treatments. Int J Cardiol 2012. doi:10.1016/j.ijcard.2012.09.054.

  86. Gullestad L, Ueland T, Vinge LE, et al. Inflammatory cytokines in heart failure: mediators and markers. Cardiology. 2012;122:23–35.

    Google Scholar 

  87. Alloatti G, Montrucchio G, Mariano F, et al. Protective effect of verapamil on the cardiac and circulatory alterations induced by platelet-activating factor. J Cardiovasc Pharmacol. 1987;9:181–6.

    Article  PubMed  Google Scholar 

  88. Kelefiotis D, Lanara E, Vakirtzi-Lemonias C, et al. Study of digoxin as inhibitor of the in vivo effects of acetyl glyceryl ether phosphorylcholine (AGEPC) in mice. Life Sci. 1988;42:623–33.

    Article  PubMed  Google Scholar 

  89. Chrysohoou C, Pitsavos C, Metallinos G, et al. Cross-sectional relationship of a Mediterranean type diet to diastolic heart function in chronic heart failure patients. Hear Vessel. 2012;27:576–84.

    Article  Google Scholar 

  90. Nomikos T, Fragopoulou E, Antonopoulou S. Food ingredients and lipid mediators. Curr Nutr Food Sci. 2007;3:255–76.

    Article  Google Scholar 

  91. Fragopoulou E, Demopoulos CA, Antonopoulou S. Lipid minor constituents in wines. A biochemical approach in the French paradox. Int J Wine Res. 2009;1:131–43.

    Google Scholar 

  92. Karantonis HC, Antonopoulou S, Perrea DN, et al. In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr Metab Cardiovasc Dis. 2006;16:174–85.

    Article  PubMed  Google Scholar 

  93. Antonopoulou S, Fragopoulou E, Karantonis HC, et al. Effect of traditional Greek Mediterranean meals on platelet aggregation in normal subjects and in patients with type 2 diabetes mellitus. J Med Food. 2006;9:356–62.

    Article  PubMed  Google Scholar 

  94. Matsumori A. Anti-inflammatory therapy for heart failure. Curr Opin Pharmacol. 2004;4:171–6.

    Article  PubMed  Google Scholar 

  95. Godfrey V, Farquharson C, Macdonald JE, Yee CM, Struthers AD. Effect of spironolactone on C-reactive protein levels in patients with heart disease. Int J Cardiol. 2007;117:282–4.

    Article  PubMed  Google Scholar 

  96. Tsantila N, Tsoupras AB, Fragopoulou E, et al. In vitro and in vivo effects of statins on platelet-activating factor and its metabolism. Angiology. 2011;62:209–18.

    Article  PubMed  Google Scholar 

  97. Heller R, Bussolino F, Ghigo D, et al. Nitrovasodilators inhibit thrombin-induced platelet-activating factor synthesis in human endothelial cells. Biochem Pharmacol. 1992;44:223–9.

    Article  PubMed  Google Scholar 

  98. Tolins JP, Melemed A, Sulciner D, Gustafson KS, Vercellotti GM. Calcium channel blockade inhibits platelet activating factor production by human umbilical vein endothelial cells. Lipids. 1991;26:1218–22.

    Article  PubMed  Google Scholar 

  99. Schror K, Felsch A. Ramiprilat prevents PAF-induced myocellular and endothelial injury in a neutrophil-perfused heart preparation. Agents Actions Suppl. 1992;38(Pt 3):209–16.

    PubMed  Google Scholar 

  100. White HL, Faison LD. Inhibition of lyso-PAF: acetyl-CoA acetyltransferase by salicylates and other compounds. Prostaglandins. 1988;35:939–44.

    PubMed  Google Scholar 

Download references

Disclosure

Paraskevi Detopoulou declares that she has no conflict of interest.

Tzortzis Nomikos declares that he has no conflict of interest.

Elizabeth Fragopoulou declares that she has no conflict of interest.

Christina Chrysohoou declares that she has no conflict of interest.

Smaragdi Antonopoulou declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smaragdi Antonopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detopoulou, P., Nomikos, T., Fragopoulou, E. et al. Platelet Activating Factor in Heart Failure: Potential Role in Disease Progression and Novel Target for Therapy. Curr Heart Fail Rep 10, 122–129 (2013). https://doi.org/10.1007/s11897-013-0131-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0131-2

Keywords

Navigation