Skip to main content
Log in

Cirrhotic Cardiomyopathy

  • Liver (S Cotler and E Kallwitz, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cirrhotic cardiomyopathy is a syndrome of depressed cardiac function in patients with cirrhosis. We aimed to review the historical background, pathophysiology and pathogenesis, diagnostic definitions, clinical relevance, and management of this syndrome.

Recent Findings

An inflammatory phenotype underlies the pathogenesis: gut bacterial translocation with endotoxemia stimulates cytokines and cardiodepressant factors, such as nitric oxide and endocannabinoids. Cardiomyocyte plasma membrane biochemical and biophysical changes also play a pathogenic role. These factors lead to impaired beta-adrenergic function. Proposed new echocardiographic criteria for the diagnosis of cirrhotic cardiomyopathy include systolic global longitudinal strain and indices of diastolic dysfunction. Cardiac dysfunction participates in the pathogenesis of hepatorenal syndrome and increased morbidity/mortality of cirrhotic patients to hemorrhage, infection, and surgery, including liver transplantation. There is no specific treatment, although β-adrenergic blockade and supportive management have been proposed, but it needs further study.

Summary

Cirrhotic cardiomyopathy is a clinically relevant syndrome afflicting patients with established cirrhosis. Optimum management remains unclear, and further study is needed in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Kowalski HJ, Abelmann WH. The cardiac output at rest in Laennec's cirrhosis. J Clin Invest. 1953;32(10):1025–33. The study that ushered in the field of 'cardio-hepatology'. The first study. It also even described QT prolongation.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. •• Lee SS. Cardiac abnormalities in liver cirrhosis. West J Med. 1989;151(5):530–5 This review started the field of cirrhotic cardiomyopathy, and coined the term.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. •• Ma Z, Lee SS. Cirrhotic cardiomyopathy: getting to the heart of the matter. Hepatology. 1996;24(2):451–9. Most cited review; firmly established cirrhotic cardiomyopathy as an important field of study.

    CAS  PubMed  Google Scholar 

  4. • Limas CJ, Guiha NH, Lekagul O, Cohn JN. Impaired left ventricular function in alcoholic cirrhosis with ascites. Ineffectiveness of ouabain. Circulation. 1974;49(4):754–60. This study, along with the Regans demonstrated abnormal contractility in patients with cirrhosis.

    CAS  PubMed  Google Scholar 

  5. •• Regan TJ, Levinson GE, Oldewurtel HA, Frank MJ, Weisse AB, Moschos CB. Ventricular function in noncardiacs with alcoholic fatty liver: role of ethanol in the production of cardiomyopathy. J Clin Invest. 1969;48(2):397–407. This study first described abnormal contractility in patients with alcoholic cirrhosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Antman EM, Tanasijevic MJ, Thompson B, Schactman M, McCabe CH, Cannon CP, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med. 1996;335(18):1342–9.

    CAS  PubMed  Google Scholar 

  7. Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis—current status and future directions. J Hepatol. 2014;61(4):912–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim MY, Baik SK, Lee SS. Hemodynamic alterations in cirrhosis and portal hypertension. Korean J Hepatol. 2010;16(4):347–52.

    PubMed  PubMed Central  Google Scholar 

  9. Fukui H. Gut-liver axis in liver cirrhosis: how to manage leaky gut and endotoxemia. World J Hepatol. 2015;7(3):425–42.

    PubMed  PubMed Central  Google Scholar 

  10. Joseph LC, Reyes MV, Lakkadi KR, Gowen BH, Hasko G, Drosatos K, et al. PKCdelta causes sepsis-induced cardiomyopathy by inducing mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 2020;318(4):H778–86.

    CAS  PubMed  Google Scholar 

  11. Ueda H, Yamaguchi O, Taneike M, Akazawa Y, Wada-Kobayashi H, Sugihara R, et al. Administration of a TLR9 inhibitor attenuates the development and progression of heart failure in mice. JACC Basic Transl Sci. 2019;4(3):348–63.

    PubMed  PubMed Central  Google Scholar 

  12. Asgharzadeh F, Bargi R, Beheshti F, Hosseini M, Farzadnia M, Khazaei M. Thymoquinone prevents myocardial and perivascular fibrosis induced by chronic lipopolysaccharide exposure in male rats: thymoquinone and cardiac fibrosis. Aust J Pharm. 2018;21(4):284–93.

    Google Scholar 

  13. • Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology. 2000;118(5):937–44. Demonstrated pathogenic role of NO in cirrhotic cardiomyopathy.

    CAS  PubMed  Google Scholar 

  14. Wu H, Liu J, Li W, Liu G, Li Z. LncRNA-HOTAIR promotes TNF-alpha production in cardiomyocytes of LPS-induced sepsis mice by activating NF-kappaB pathway. Biochem Biophys Res Commun. 2016;471(1):240–6.

    CAS  PubMed  Google Scholar 

  15. Jude B, Vetel S, Giroux-Metges MA, Pennec JP. Rapid negative inotropic effect induced by TNF-alpha in rat heart perfused related to PKC activation. Cytokine. 2018;107:65–9.

    CAS  PubMed  Google Scholar 

  16. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest. 1993;92(5):2303–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang YR, Du JY, Wang DD, Yang X. miRNA-130a improves cardiac function by down-regulating TNF-alpha expression in a rat model of heart failure. Eur Rev Med Pharmacol Sci. 2018;22(23):8454–61.

    PubMed  Google Scholar 

  18. • Yang YY, Liu H, Nam SW, Kunos G, Lee SS. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: interaction between TNFalpha and endocannabinoids. J Hepatol. 2010;53(2):298–306. Demonstrated that TNF-alpha is a pathogenic mechanism of cirrhotic cardiomyopathy.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Muller-Werdan U, Schumann H, Fuchs R, Reithmann C, Loppnow H, Koch S, et al. Tumor necrosis factor alpha (TNF alpha) is cardiodepressant in pathophysiologically relevant concentrations without inducing inducible nitric oxide-(NO)-synthase (iNOS) or triggering serious cytotoxicity. J Mol Cell Cardiol. 1997;29(11):2915–23.

    CAS  PubMed  Google Scholar 

  20. Friedrichs GS, Swillo RE, Jow B, Bridal T, Numann R, Warner LM, et al. Sphingosine modulates myocyte electrophysiology, induces negative inotropy, and decreases survival after myocardial ischemia. J Cardiovasc Pharmacol. 2002;39(1):18–28.

    CAS  PubMed  Google Scholar 

  21. Pacher P, Steffens S, Hasko G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol. 2018;15(3):151–66.

    CAS  PubMed  Google Scholar 

  22. Mukhopadhyay P, Rajesh M, Batkai S, Patel V, Kashiwaya Y, Liaudet L, et al. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc Res. 2010;85(4):773–84.

    CAS  PubMed  Google Scholar 

  23. • Nam SW, Liu H, Wong JZ, Feng AY, Chu G, Merchant N, et al. Cardiomyocyte apoptosis contributes to pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated mice. Clin Sci (Lond). 2014;127(8):519–26. Showed role of cardiac apoptosis in pathogenesis.

    CAS  Google Scholar 

  24. Rajesh M, Batkai S, Kechrid M, Mukhopadhyay P, Lee WS, Horvath B, et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes. 2012;61(3):716–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep. 2014;2(8).

  26. • Gaskari SA, Liu H, D’Mello C, Kunos G, Lee SS. Blunted cardiac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids. J Hepatol. 2015;62(6):1272–7. Showed that fragility to hypotensive hemorrhage is mediated via endocannabinoids.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee RF, Glenn TK, Lee SS. Cardiac dysfunction in cirrhosis. Best Pract Res Clin Gastroenterol. 2007;21(1):125–40.

    CAS  PubMed  Google Scholar 

  28. •• Lee SS, Marty J, Mantz J, Samain E, Braillon A, Lebrec D. Desensitization of myocardial beta-adrenergic receptors in cirrhotic rats. Hepatology. 1990;12(3 Pt 1):481–5. First mechanistic pathogenic study of cirrhotic cardiomyopathy in a rat model.

    CAS  PubMed  Google Scholar 

  29. • Liu H, Jayakumar S, Traboulsi M, Lee SS. Cirrhotic cardiomyopathy: implications for liver transplantation. Liver Transpl. 2017;23(6):826–35. Reviewed role of cirrhotic cardiomyopathy in the transplant process.

    PubMed  Google Scholar 

  30. •• Izzy M, Van Wagner LB, Lin G, Altieri M, Findlay JY, Oh JK, et al. Cirrhotic cardiomyopathy C: redefining cirrhotic cardiomyopathy for the modern era. Hepatology. 2020;71(1):334–45. Redefined new cirrhotic cardiomyopathy diagnostic criteria.

    PubMed  Google Scholar 

  31. Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation. 2007;116(22):2597–609.

    PubMed  Google Scholar 

  32. Moller S, Wiese S, Halgreen H, Hove JD. Diastolic dysfunction in cirrhosis. Heart Fail Rev. 2016;21(5):599–610.

    PubMed  Google Scholar 

  33. Stundiene I, Sarnelyte J, Norkute A, Aidietiene S, Liakina V, Masalaite L, et al. Liver cirrhosis and left ventricle diastolic dysfunction: systematic review. World J Gastroenterol. 2019;25(32):4779–95.

    PubMed  PubMed Central  Google Scholar 

  34. • Bernardi M, Calandra S, Colantoni A, Trevisani F, Raimondo ML, Sica G, et al. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology. 1998;27(1):28–34. First large-sample clinical study showing correlation of long QTc and stage of cirrhosis.

    CAS  PubMed  Google Scholar 

  35. • Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Moller S. Dyssynchronous electrical and mechanical systole in patients with cirrhosis. J Hepatol. 2002;36(4):513–20. Description of electromechanical dyssynchrony.

    PubMed  Google Scholar 

  36. •• Wong F, Girgrah N, Graba J, Allidina Y, Liu P, Blendis L. The cardiac response to exercise in cirrhosis. Gut. 2001;49(2):268–75. First demonstration of chronotropic incompetence.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. •• Zambruni A, Di Micoli A, Lubisco A, Domenicali M, Trevisani F, Bernardi M. QT interval correction in patients with cirrhosis. J Cardiovasc Electrophysiol. 2007;18(1):77–82. Showed that Friedericia method of QT correction is superior for cirrhosis.

    PubMed  Google Scholar 

  38. • Bernardi M, Maggioli C, Dibra V, Zaccherini G. QT interval prolongation in liver cirrhosis: innocent bystander or serious threat? Expert Rev Gastroenterol Hepatol. 2012;6(1):57–66. Excellent discussion of possible relevance of QTc prolongation in cirrhosis.

    PubMed  Google Scholar 

  39. • Ward CA, Ma Z, Lee SS, Giles WR. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am J Physiol. 1997;273(2 Pt 1):G537–44. Showed that QTc prolongation is due to abnormal function of two types of K+channels in a rat model.

    CAS  PubMed  Google Scholar 

  40. Gassanov N, Caglayan E, Semmo N, Massenkeil G, Er F. Cirrhotic cardiomyopathy: a cardiologist's perspective. World J Gastroenterol. 2014;20(42):15492–8.

    PubMed  PubMed Central  Google Scholar 

  41. Piek A, Du W, de Boer RA, Sillje HHW. Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci. 2018;55(4):246–63.

    CAS  PubMed  Google Scholar 

  42. Richards M, Troughton RW. NT-proBNP in heart failure: therapy decisions and monitoring. Eur J Heart Fail. 2004;6(3):351–4.

    CAS  PubMed  Google Scholar 

  43. Nabeshima Y, Sakanishi Y, Otani K, Higa Y, Honda M, Otsuji Y, et al. Estimation of B-type natriuretic peptide values from N-terminal proBNP levels. J UOEH. 2020;42(1):1–12.

    PubMed  Google Scholar 

  44. Sezgin B, Cindoglu C, Uyanikoglu A, Yenice N. Association of cirrhosis and cardiomyopathy. Euroasian J Hepatogastroenterol. 2019;9(1):23–6.

    PubMed  PubMed Central  Google Scholar 

  45. Metwaly A, Khalik AA, Nasr FM, Sabry AI, Gouda MF, Hassan M. Brain natriuretic peptide in liver cirrhosis and fatty liver: correlation with cardiac performance. Electron Physician. 2016;8(2):1984–93.

    PubMed  PubMed Central  Google Scholar 

  46. • Zhao J, Li S, Ren L, Guo X, Qi X. Pro-brain natriuretic peptide and troponin T-hypersensitivity levels correlate with the severity of liver dysfunction in liver cirrhosis. Am J Med Sci. 2017;354(2):131–9. Suggested usefulness of both troponin T and pro-BNP as predictive biomarkers.

    PubMed  Google Scholar 

  47. Abbas WA, Kasem Ahmed SM, Abdel Aal AM, Mahmoud AA, Abdelmalek MO, Mekky MA, et al. Galactin-3 and brain natriuretic peptide versus conventional echocardiography in the early detection of cirrhotic cardiomyopathy. Turk J Gastroenterol. 2016;27(4):367–74.

    PubMed  Google Scholar 

  48. Ansari U, Behnes M, Hoffmann J, Natale M, Fastner C, El-Battrawy I, et al. Galectin-3 reflects the echocardiographic grades of left ventricular diastolic dysfunction. Ann Lab Med. 2018;38(4):306–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. • Saner FH, Neumann T, Canbay A, Treckmann JW, Hartmann M, Goerlinger K, et al. High brain-natriuretic peptide level predicts cirrhotic cardiomyopathy in liver transplant patients. Transpl Int. 2011;24(5):425–32. Suggested predictive utility of BNP.

    CAS  PubMed  Google Scholar 

  50. Zivlas C, Triposkiadis F, Psarras S, Giamouzis G, Skoularigis I, Chryssanthopoulos S, et al. Left atrial volume index in patients with heart failure and severely impaired left ventricular systolic function: the role of established echocardiographic parameters, circulating cystatin C and galectin-3. Ther Adv Cardiovasc Dis. 2017;11(11):283–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gehlken C, Suthahar N, Meijers WC, de Boer RA. Galectin-3 in heart failure: an update of the last 3 years. Heart Fail Clin. 2018;14(1):75–92.

    PubMed  Google Scholar 

  52. Han R, Li K, Li L, Zhang L, Zheng H. Expression of microRNA-214 and galectin-3 in peripheral blood of patients with chronic heart failure and its clinical significance. Exp Ther Med. 2020;19(2):1322–8.

    PubMed  Google Scholar 

  53. Gudowska M, Gruszewska E, Cylwik B, Panasiuk A, Rogalska M, Flisiak R, et al. Galectin-3 concentration in liver diseases. Ann Clin Lab Sci. 2015;45(6):669–73.

    CAS  PubMed  Google Scholar 

  54. Liu H, Lee SS. Elevated galectin-3 in cirrhotic heart increases TNFα and inhibits cardiac contractility in rats. Abstract. Hepatology. 2015;62:110773.

    Google Scholar 

  55. Lyngbakken MN, Aagaard EN, Kvisvik B, Berge T, Pervez MO, Brynildsen J, et al. Cardiac troponin I and T are associated with left ventricular function and structure: data from the Akershus cardiac examination 1950 study. Clin Chem. 2020;66(4):567–78.

    PubMed  Google Scholar 

  56. Gori M, Senni M, Metra M. High-sensitive cardiac troponin for prediction of clinical heart failure: are we ready for prime time? Circulation. 2017;135(16):1506–8.

    PubMed  Google Scholar 

  57. Elnegouly M, Umgelter K, Safi W, Hapfelmeier A, Schmid RM, Umgelter A. Elevated cardiac troponin T in cirrhotic patients with emergency care admissions: associations with mortality. J Gastroenterol Hepatol. 2018;33(2):518–23.

    CAS  PubMed  Google Scholar 

  58. •• Ruiz-del-Arbol L, Urman J, Fernandez J, Gonzalez M, Navasa M, Monescillo A, et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology. 2003;38(5):1210–8. First study to suggest role of cardiac dysfunction in pathogenesis of hepatorenal syndrome after spontaneous bacterial peritonitis.

    PubMed  Google Scholar 

  59. Lee SS. Cardiac dysfunction in spontaneous bacterial peritonitis: a manifestation of cirrhotic cardiomyopathy? Hepatology. 2003;38(5):1089–91.

    PubMed  Google Scholar 

  60. Adebayo D, Neong SF, Wong F. Ascites and hepatorenal syndrome. Clin Liver Dis. 2019;23(4):659–82.

    PubMed  Google Scholar 

  61. • Nazar A, Guevara M, Sitges M, Terra C, Sola E, Guigou C, et al. Left ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J Hepatol. 2013;58(1):51–7. Renal impairment correlated with diastolic dysfunction.

    PubMed  Google Scholar 

  62. Izzy M, Oh J, Watt KD. Cirrhotic cardiomyopathy after transplantation: neither the transient nor innocent bystander. Hepatology. 2018;68(5):2008–15.

    PubMed  Google Scholar 

  63. Fialla AD, Schaffalitzky de Muckadell OB, Bie P, Thiesson HC. Activation of RAAS in a rat model of liver cirrhosis: no effect of losartan on renal sodium excretion. BMC Nephrol. 2018;19(1):238.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ames MK, Atkins CE, Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019;33(2):363–82.

    PubMed  PubMed Central  Google Scholar 

  65. Khudiakov AA, Smolina NA, Perepelina KI, Malashicheva AB, Kostareva AA. Extracellular microRNAs and mitochondrial DNA as potential biomarkers of arrhythmogenic cardiomyopathy. Biochemistry (Mosc). 2019;84(3):272–82.

    CAS  Google Scholar 

  66. Matyas C, Erdelyi K, Trojnar E, Zhao S, Varga ZV, Paloczi J, et al. Interplay of liver-heart inflammatory axis and cannabinoid 2 receptor signaling in an experimental model of hepatic cardiomyopathy. Hepatology. 2020;71(4):1391–407.

    CAS  PubMed  Google Scholar 

  67. •• Silvestre OM, Farias AQ, Ramos DS, Furtado MS, Rodrigues AC, Ximenes RO, et al. Beta-blocker therapy for cirrhotic cardiomyopathy: a randomized-controlled trial. Eur J Gastroenterol Hepatol. 2018;30(8):930–7. First RCT of potential therapy, 6 months of beta-blocker, in cirrhotic cardiomyopathy. Negative study, but authors suggested that a longer duration may be needed.

    CAS  PubMed  Google Scholar 

  68. • Henriksen JH, Bendtsen F, Hansen EF, Moller S. Acute non-selective beta-adrenergic blockade reduces prolonged frequency-adjusted Q-T interval (QTc) in patients with cirrhosis. J Hepatol. 2004;40(2):239–46. 90 min beta-blockade corrected the prolonged QTc.

    CAS  PubMed  Google Scholar 

  69. • Zambruni A, Trevisani F, Di Micoli A, Savelli F, Berzigotti A, Bracci E, et al. Effect of chronic beta-blockade on QT interval in patients with liver cirrhosis. J Hepatol. 2008;48(3):415–21. Beta-blockade of 1–3 months duration also shortened the Qtc interval but only using the Bazett method of correction.

    PubMed  Google Scholar 

  70. • Sinha R, Lockman KA, Mallawaarachchi N, Robertson M, Plevris JN, Hayes PC. Carvedilol use is associated with improved survival in patients with liver cirrhosis and ascites. J Hepatol. 2017;67(1):40–6. Retrospective study suggested possible usefulness of carvedilol in cirrhotic cardiomyopathy.

    CAS  PubMed  Google Scholar 

  71. •• Premkumar M, Rangegowda D, Vyas T, Khumuckham JS, Shasthry SM, Thomas SS, et al. Carvedilol combined with ivabradine improves left ventricular diastolic dysfunction, clinical progression, and survival in cirrhosis. J Clin Gastroenterol. 2019. Important RCT showed that carvedilol combined with ivabradine improved diastolic dysfunction and survival compared to control group.

  72. • Koshy AN, Gow PJ, Han HC, Teh AW, Jones R, Testro A, et al. Cardiovascular mortality following liver transplantation: predictors and temporal trends over 30 years. Eur Heart J Qual Care Clin Outcomes. 2020. Excellent review of CV mortality after liver transplantation.

  73. • Torregrosa M, Aguade S, Dos L, Segura R, Gonzalez A, Evangelista A, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42(1):68–74. First study examining cardiac function and reversibility after liver transplantation.

    PubMed  Google Scholar 

  74. Sonny A, Ibrahim A, Schuster A, Jaber WA, Cywinski JB. Impact and persistence of cirrhotic cardiomyopathy after liver transplantation. Clin Transpl. 2016;30(9):986–93.

    Google Scholar 

  75. •• Van Wagner LB, Ning H, Whitsett M, Levitsky J, Uttal S, Wilkins JT, et al. A point-based prediction model for cardiovascular risk in orthotopic liver transplantation: the CAR-OLT score. Hepatology. 2017;66(6):1968–79. Validation of points-based system to predict cardiovascular events after transplantation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SS Lee outlined the sections and revised the draft. KT Yoon and H Liu composed the first draft. All authors read and approved the final version.

Corresponding author

Correspondence to Samuel S. Lee.

Ethics declarations

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Conflict of Interest

The authors declared that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Liver

Prof. Yoon was the recipient of a sabbatical leave from Pusan National University Yangsan Hospital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, K.T., Liu, H. & Lee, S.S. Cirrhotic Cardiomyopathy. Curr Gastroenterol Rep 22, 45 (2020). https://doi.org/10.1007/s11894-020-00783-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-020-00783-1

Keywords

Navigation