Skip to main content

Advertisement

Log in

Endoscopic Mucosal Imaging of Gastrointestinal Neoplasia in 2013

  • GI Oncology (R Bresalier, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The holy grail of gastrointestinal endoscopy consists of the detection, in vivo characterization, and endoscopic removal of early or premalignant mucosal lesions. While our ability to achieve this goal has improved substantially since the development of the modern video-endoscope, inadequate visual inspection, errors of interpretation, and lesion subtlety all contribute to the continued suboptimal detection and assessment of early neoplasia. A myriad of new technologies has thus emerged that may help resolve these shortcomings; high magnification endoscopes, as well as the techniques of dye-based and virtual chromoendoscopy, are now widely available, while confocal laser endomicroscopy and endocystoscopy, optical coherence tomography, and autofluorescence imaging are generally applicable only in a research setting. Such technologies can be broadly categorized according to whether they potentially afford endoscopists improved detection, or real-time characterization, of mucosal lesions. Enhanced detection of otherwise “invisible” lesions, such as a flat area of intramucosal adenocarcinoma within Barrett’s esophagus, carries the potential of an endoscopic cure prior to the development into a more advanced or metastatic disease. The ability to characterize a lesion to achieve an in vivo diagnosis, such as a colonic polyp, potentially affords endoscopists the ability to decide which lesions require removal and which can be safely left behind or discarded without histological assessment. Furthermore targeted biopsies, such as in the surveillance of chronic colitis, may prove to be more accurate and efficacious than the current protocol of random biopsies. An important caveat in the discussion of developing technologies in early cancer detection is the fundamental importance of a health-care system that promotes screening programs to recruit at-risk individuals. The ideal tool to optimize the use of endoscopy in population screening would be a panel of reliable biomarkers (blood, stool, or urine) that could effectively select a high-risk group, thus reducing the indiscriminate use of an expensive technology. The following review summarizes the current endoscopic imaging techniques available, and in development, for the early identification of gastrointestinal neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. East JE, Stavrindis M, Thomas-Gibson S, Guenther T, Tekkis PP, Saunders BP. A comparative study of standard vs. high definition colonoscopy for adenoma and hyperplastic polyp detection with optimized withdrawal technique. Aliment Pharmacol Ther. 2008;28(6):768–76.

    Article  PubMed  CAS  Google Scholar 

  2. Pellisé M, Fernández-Esparrach G, Cárdenas A, Sendino O, Ricart E, Vaquero E, et al. Impact of wide-angle, high-definition endoscopy in the diagnosis of colorectal neoplasia: a randomized controlled trial. Gastroenterology. 2008;135(4):1062–8.

    Article  PubMed  Google Scholar 

  3. Burke CA, Choure AG, Sanaka MR, Lopez R. A comparison of high-definition versus conventional colonoscopes for polyp detection. Dig Dis Sci. 2010;55(6):1716–20.

    Article  PubMed  Google Scholar 

  4. Tribonias G, Theodoropoulou A, Konstantinidis K, Vardas E, Karmiris K, Chroniaris N, Chlouverakis G, Paspatis GA. Comparison of standard vs high-definition, wide-angle colonoscopy for polyp detection: a randomized controlled trial. Colorectal Dis. 2010 Oct;12(10 Online):e260-6.

  5. Rastogi A, Early DS, Gupta N, Bansal A, Singh V, Ansstas M, et al. Randomized, controlled trial of standard-definition white-light, high-definition white-light, and narrow-band imaging colonoscopy for the detection of colon polyps and prediction of polyp histology. Gastrointest Endosc. 2011;74(3):593–602.

    Article  PubMed  Google Scholar 

  6. Subramanian V, Mannath J, Hawkey CJ, Ragunath K. High definition colonoscopy vs. standard video endoscopy for the detection of colonic polyps: a meta-analysis. Endoscopy. 2011;43(6):499–505.

    Article  PubMed  CAS  Google Scholar 

  7. •• Barclay RL, Vicari JJ, Doughty AS, Johanson JF, Greenlaw RL. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med. 2006;355(24):2533–41. Highlights the critical role withdrawal time has on adenoma detection rate.

    Article  PubMed  CAS  Google Scholar 

  8. Gupta N, Gaddam S, Wani SB, Bansal A, Rastogi A, Sharma P. Longer inspection time is associated with increased detection of high-grade dysplasia and esophageal adenocarcinoma in Barrett's esophagus. Gastrointest Endosc. 2012;76(3):531–8. Highlights the importance of careful inspection in the detection of Barrett's dysplasia.

    Article  PubMed  Google Scholar 

  9. Canto MI. Staining in gastrointestinal endoscopy: the basics. Endoscopy. 1999;31(6):479–86.

    Article  PubMed  CAS  Google Scholar 

  10. Dawsey SM, Fleischer DE, Wang GQ, Zhou B, Kidwell JA, Lu N, et al. Mucosal iodine staining improves endoscopic visualization of squamous dysplasia and squamous cell carcinoma of the esophagus in Linxian, China. Cancer. 1998;83(2):220.

    Article  PubMed  CAS  Google Scholar 

  11. Meyer V, Burtin P, Bour B, Blanchi A, Cales P, Oberti F, et al. Endoscopic detection of early esophageal cancer in a high-risk population: does Lugol staining improve videoendoscopy? Gastrointest Endosc. 1997;45(6):480.

    Article  PubMed  CAS  Google Scholar 

  12. Kondo H, Fukuda H, Ono H, Gotoda T, Saito D, Takahiro K, et al. Sodium thiosulfate solution spray for relief of irritation caused by Lugol's stain in Chromoendoscopy. Gastrointest Endosc. 2001;53:199–202.

    Article  PubMed  CAS  Google Scholar 

  13. Toyoda H, Rubio C, Befrits R, Hamamoto N, Adachi Y, Jaramillo E. Detection of intestinal metaplasia in distal esophagus and esophagogastric junction by enhanced-magnification endoscopy. Gastrointest Endosc. 2004;59(1):15.

    Article  PubMed  Google Scholar 

  14. Hoffman A, Kiesslich R, Bender A, Neurath MF, Nafe B, Herrmann G, et al. Acetic acid-guided biopsies after magnifying endoscopy compared with random biopsies in the detection of Barrett's esophagus: a prospective randomized trial with crossover design. Gastrointest Endosc. 2006;64(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  15. Longcroft-Wheaton G, Duku M, Mead R, Poller D, Bhandari P. Acetic acid spray is an effective tool for the endoscopic detection of neoplasia in patients with Barrett's esophagus. Clin Gastroenterol Hepatol. 2010;8(10):843–7.

    Article  PubMed  Google Scholar 

  16. Ferguson DD, DeVault KR, Krishna M, Loeb DS, Wolfsen HC, Wallace MB. Enhanced magnification-directed biopsies do not increase the detection of intestinal metaplasia in patients with GERD. Am J Gastroenterol. 2006;101(7):1611.

    Article  PubMed  Google Scholar 

  17. Pech O, Petrone MC, Manner H, Rabenstein T, May A, Pohl J, et al. One-step chromoendoscopy and structure enhancement using balsamic vinegar for screening of Barrett's esophagus. Acta Gastroenterol Belg. 2008;71(2):243–5.

    PubMed  Google Scholar 

  18. Kouklakis GS, Kountouras J, Dokas SM, Molyvas EJ, Vourvoulakis GP, Minopoulos G. Methylene blue chromoendoscopy for the detection of Barrett's esophagus in a Greek cohort. Endoscopy. 2003;35(5):383.

    Article  PubMed  CAS  Google Scholar 

  19. Kiesslich R, Hahn M, Herrmann G, Jung M. Screening for specialized columnar epithelium with methylene blue: chromoendoscopy in patients with Barrett's esophagus and a normal control group. Gastrointest Endosc. 2001;53(1):47.

    Article  PubMed  CAS  Google Scholar 

  20. Sharma P, Topalovski M, Mayo MS, Weston AP. Methylene blue chromoendoscopy for detection of short-segment Barrett's esophagus. Gastrointest Endosc. 2001;54(3):289.

    Article  PubMed  CAS  Google Scholar 

  21. Ngamruengphong S, Sharma VK, Das A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett's esophagus: a meta-analysis. Gastrointest Endosc. 2009;69(6):1021.

    Article  PubMed  Google Scholar 

  22. Sharma P, Weston AP, Topalovski M, Cherian R, Bhattacharyya A, Sampliner RE. Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett's oesophagus. Gut. 2003;52(1):24.

    Article  PubMed  CAS  Google Scholar 

  23. Lee BE, Kim GH, Park do Y, Kim DH, Jeon TY, Park SB, et al. Acetic acid-indigo carmine chromoendoscopy for delineating early gastric cancers: its usefulness according to histological type. BMC Gastroenterol. 2010;23:10–97.

    Google Scholar 

  24. Sakai Y, Eto R, Kasanuki J, Kondo F, Kato K, Arai M, et al. Chromoendoscopy with indigo carmine dye added to acetic acid in the diagnosis of gastric neoplasia: a prospective comparative study. Gastrointest Endosc. 2008;68(4):635–41.

    Article  PubMed  Google Scholar 

  25. Nagahama T, Yao K, Maki S, Yasaka M, Takaki Y, Matsui T, et al. Usefulness of magnifying endoscopy with narrow-band imaging for determining the horizontal extent of early gastric cancer when there is an unclear margin by chromoendoscopy (with video). Gastrointest Endosc. 2011;74(6):1259–67.

    Article  PubMed  Google Scholar 

  26. Brown SR, Baraza W. Chromoscopic colonoscopy enhances polyp detection compared with conventional colonoscopy. Cochrane Database Syst Rev. 2010.

  27. Pohl J, Schneider A, Vogell H, Mayer G, Kaiser G, Ell C. Pancolonic chromoendoscopy with indigo carmine versus standard colonoscopy for detection of neoplastic lesions: a randomised two-centre trial. Gut. 2011;60(4):485.

    Article  PubMed  Google Scholar 

  28. Repici A, Di Stefano AF, Radicioni MM, Jas V, Moro L, Danese S. Methylene blue MMX tablets for chromoendoscopy. Safety tolerability and bioavailability in healthy volunteers. Contemp Clin Trials. 2012;33(2):260–7

    Google Scholar 

  29. Wu L, Li P, Wu J, Cao Y, Gao F. The diagnostic accuracy of chromoendoscopy for dysplasia in ulcerative colitis: meta-analysis of six randomized controlled trials. Colorectal Dis. 2012;14(4):416–20.

    Article  PubMed  CAS  Google Scholar 

  30. • Subramanian V, Mannath J, Ragunath K, Hawkey CJ. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33(3):304–12. Supports the use of chromoendoscopy for dysplasia surveillance.

  31. Lee CT, Chang CY, Lee YC, Tai CM, Wang WL, Tseng PH, et al. Narrow-band imaging with magnifying endoscopy for the screening of esophageal cancer in patients with primary head and neck cancers. Endoscopy. 2010;42(8):613–9.

    Article  PubMed  CAS  Google Scholar 

  32. Hirohisa Machida, Kazunari Tominaga, Masami Nakatani, et al. Final Result of a Prospective Non-Randomized Study for Accuracy of Detection and Diagnosis of Esophageal Squamous Cell Carcinoma by Tandem Non-Magnifying Endoscopy With Narrow-Band Imaging and Iodine Staining. Gastrointestinal Endoscopy Vol. 75, Issue 4, Supplement, Page AB169.

  33. Kuraoka K, Hoshino E, Tsuchida T, Fujisaki J, Takahashi H, Fujita R. Early esophageal cancer can be detected by screening endoscopy assisted with narrow-band imaging (NBI). Hepatogastroenterology. 2009;56(89):63–6.

    PubMed  Google Scholar 

  34. Muto M, Minashi K, Yano T, Saito Y, Oda I, Nonaka S, et al. Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. J Clin Oncol. 2010;28(9):1566–72.

    Article  PubMed  Google Scholar 

  35. • Sharma P, Hawes RH, Bansal A, Gupta N, Curvers W, Rastogi A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett's oesophagus: a prospective, international, randomised controlled trial. Gut. 2013;62(1):15–21. Demonstrates that NBI can be useful for targeting surveillance biopsies without compromising yield.

    Article  PubMed  Google Scholar 

  36. Wolfsen HC, Crook JE, Krishna M, Achem SR, Devault KR, Bouras EP, et al. Mucosal morphology in Barrett's esophagus: interobserver agreement and role of narrow band imaging. Gastroenterology. 2008;135(1):24.

    Article  PubMed  Google Scholar 

  37. Mannath J, Subramanian V, Hawkey CJ, Ragunath K. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett's esophagus: a meta-analysis. Endoscopy. 2010;42(5):351.

    Article  PubMed  CAS  Google Scholar 

  38. Silva FB, Dinis-Ribeiro M, Vieth M, Rabenstein T, Goda K, Kiesslich R, et al. Endoscopic assessment and grading of Barrett's esophagus using magnification endoscopy and narrow-band imaging: accuracy and interobserver agreement of different classification systems (with videos). Gastrointest Endosc. 2011;73(1):7.

    Article  PubMed  Google Scholar 

  39. Ezoe Y, Muto M, Horimatsu T, Minashi K, Yano T, Sano Y, et al. Magnifying narrow-band imaging versus magnifying white-light imaging for the differential diagnosis of gastric small depressive lesions: a prospective study. Gastrointest Endosc. 2010;71(3):477–84.

    Article  PubMed  Google Scholar 

  40. Kato M, Kaise M, Yonezawa J, Toyoizumi H, Yoshimura N, Yoshida Y, et al. Magnifying endoscopy with narrow-band imaging achieves superior accuracy in the differential diagnosis of superficial gastric lesions identified with white-light endoscopy: a prospective study. Gastrointest Endosc. 2010;72(3):523–9.

    Article  PubMed  Google Scholar 

  41. Kiyotoki S, Nishikawa J, Satake M, Fukagawa Y, Shirai Y, Hamabe K, et al. Usefulness of magnifying endoscopy with narrow-band imaging for determining gastric tumor margin. J Gastroenterol Hepatol. 2010;25(10):1636–41.

    Article  PubMed  Google Scholar 

  42. Kato M, Kaise M, Yonezawa J, Goda K, Toyoizumi H, Yoshimura N, et al. Trimodal imaging endoscopy may improve diagnostic accuracy of early gastric neoplasia: a feasibility study. Gastrointest Endosc. 2009;70(5):899–906.

    Article  PubMed  Google Scholar 

  43. Kosaka R, Tanaka K, Tano S, Takayama R, Nishikawa K, Hamada Y, et al. Magnifying endoscopy for diagnosis of residual/local recurrent gastric neoplasms after previous endoscopic treatment. Surg Endosc. 2012;26(8):2299–305.

    Article  PubMed  Google Scholar 

  44. Nagorni A, Bjelakovic G, Petrovic B. Narrow band imaging versus conventional white light colonoscopy for the detection of colorectal polyps. Cochrane Database Syst Rev. 2012;1, CD008361.

    PubMed  Google Scholar 

  45. • Pasha SF, Leighton JA, Das A, Harrison ME, Gurudu SR, Ramirez FC, et al. Comparison of the yield and miss rate of narrow band imaging and white light endoscopy in patients undergoing screening or surveillance colonoscopy: a meta-analysis. Am J Gastroenterol. 2012;107(3):363–70. This study found that adenoma detection rates were not improved with the use of NBI.

    Article  PubMed  Google Scholar 

  46. Dinesen L, Chua TJ, Kaffes AJ. Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest Endosc. 2012;75(3):604–11.

    Article  PubMed  Google Scholar 

  47. Paggi S, Rondonotti E, Amato A, Terruzzi V, Imperiali G, Mandelli G, et al. Resect and discard strategy in clinical practice: a prospective cohort study. Endoscopy. 2012;44(10):899–904.

    Article  PubMed  CAS  Google Scholar 

  48. Hewett DG, Huffman ME, Rex DK. Leaving distal colorectal hyperplastic polyps in place can be achieved with high accuracy by using narrow-band imaging: an observational study. Gastrointest Endosc. 2012;76(2):374–80.

    Article  PubMed  Google Scholar 

  49. • Wu L, Li Y, Li Z, Cao Y, Gao F. The diagnostic accuracy of narrow-band imaging for the differentiation of neoplastic from non-neoplastic colorectal polyps: a meta-analysis. Colorectal Dis. 2013;15(1):3–11. This study demonstrates the high accuracy of NBI for characterizing colo-rectal polyps.

    Article  PubMed  CAS  Google Scholar 

  50. Kuiper T, Marsman WA, Jansen JM, van Soest EJ, Haan YC, Bakker GJ, et al. Accuracy for optical diagnosis of small colorectal polyps in nonacademic settings. Clin Gastroenterol Hepatol. 2012;10(9):1016–20.

    Article  PubMed  Google Scholar 

  51. Gupta N, Bansal A, Rao D, Early DS, Jonnalagadda S, Edmundowicz SA, et al. Accuracy of in vivo optical diagnosis of colon polyp histology by narrow-band imaging in predicting colonoscopy surveillance intervals. Gastrointest Endosc. 2012;75(3):494–502.

    Article  PubMed  Google Scholar 

  52. Takemura Y, Yoshida S, Tanaka S, Kawase R, Onji K, Oka S, et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest Endosc. 2012;75(1):179–85.

    Article  PubMed  Google Scholar 

  53. Gross S, Trautwein C, Behrens A, Winograd R, Palm S, Lutz HH, et al. Computer-based classification of small colorectal polyps by using narrow-band imaging with optical magnification. Gastrointest Endosc. 2011;74(6):1354–9.

    Article  PubMed  Google Scholar 

  54. Dekker E, van den Broek FJ, Reitsma JB, Hardwick JC, Offerhaus GJ, van Deventer SJ, et al. Narrow-band imaging compared with conventional colonoscopy for the detection of dysplasia in patients with longstanding ulcerative colitis. Endoscopy. 2007;39(3):216–21.

    Article  PubMed  CAS  Google Scholar 

  55. van den Broek FJ, Fockens P, van Eeden S, Stokkers PC, Ponsioen CY, Reitsma JB, et al. Narrow-band imaging versus high-definition endoscopy for the diagnosis of neoplasia in ulcerative colitis. Endoscopy. 2011;43(2):108–15.

    Article  PubMed  Google Scholar 

  56. Pellisé M, López-Cerón M, de Rodríguez MC, Jimeno M, Zabalza M, Ricart E, et al. Narrow-band imaging as an alternative to chromoendoscopy for the detection of dysplasia in long-standing inflammatory bowel disease: a prospective, randomized, crossover study. Gastrointest Endosc. 2011;74(4):840–8.

    Article  PubMed  Google Scholar 

  57. Ignjatovic A, East JE, Subramanian V, Suzuki N, Guenther T, Palmer N, et al. Narrow band imaging for detection of dysplasia in colitis: a randomized controlled trial. Am J Gastroenterol. 2012;107(6):885–90.

    Article  PubMed  Google Scholar 

  58. Duque G, Almeida N, Figueiredo P, Monsanto P, Lopes S, Freire P, et al. Virtual chromoendoscopy can be a useful software tool in capsule endoscopy. Rev Esp Enferm Dig. 2012;104(5):231–6.

    Article  PubMed  Google Scholar 

  59. Imagawa H, Oka S, Tanaka S, Noda I, Higashiyama M, Sanomura Y, et al. Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chromoendoscopy: a pilot study. Scand J Gastroenterol. 2011;46(9):1133–7.

    Article  PubMed  Google Scholar 

  60. Imagawa H, Oka S, Tanaka S, Noda I, Higashiyama M, Sanomura Y, et al. Improved visibility of lesions of the small intestine via capsule endoscopy with computed virtual chromoendoscopy. Gastrointest Endosc. 2011;73(2):299–306.

    Article  PubMed  Google Scholar 

  61. Pech O, Rabenstein T, Manner H, Petrone MC, Pohl J, Vieth M, et al. Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus. Clin Gastroenterol Hepatol. 2008;6(1):89–94.

    Article  PubMed  Google Scholar 

  62. Liu H, Li YQ, Yu T, Zhao YA, Zhang JP, Zuo XL, et al. Confocal laser endomicroscopy for superficial esophageal squamous cell carcinoma. Endoscopy. 2009;41(2):99–106.

    Article  PubMed  CAS  Google Scholar 

  63. Kiesslich R, Gossner L, Goetz M, Dahlmann A, Vieth M, Stolte M, et al. In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol. 2006;4(8):979.

    Article  PubMed  Google Scholar 

  64. • Sharma P, Meining AR, Coron E, Lightdale CJ, Wolfsen HC, Bansal A, et al. Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc. 2011;74(3):465–72. This study demonstrates the potential increase in dysplasia detection afforded by confocal endomicroscopy.

    Article  PubMed  Google Scholar 

  65. Bertani H, Frazzoni M, Dabizzi E, Pigò F, Losi L, Manno M, Manta R, Bassotti G, Conigliaro R. Improved Detection of Incident Dysplasia by Probe-Based Confocal Laser Endomicroscopy in a Barrett's Esophagus Surveillance Program. Dig Dis Sci. 2012 Aug 9.

  66. Canto MI, Anandasabapathy A, Brugge WR, et al. In vivo endoscope-based confocal laser endomicroscopy (eCLE) improves detection of unlocalized Barrett’s esophagus-related neoplasia over high resolution white light endoscopy: an international multicenter randomized controlled trial. Gastrointest Endosc. 2012;75(4 Suppl):AB174.

    Article  Google Scholar 

  67. Bajbouj M, Vieth M, Rösch T, Miehlke S, Becker V, Anders M, et al. Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barrett's esophagus. Endoscopy. 2010;42(6):435–40.

    Article  PubMed  CAS  Google Scholar 

  68. Wallace MB, Crook JE, Saunders M, Lovat L, Coron E, Waxman I, et al. Multicenter, randomized, controlled trial of confocal laser endomicroscopy assessment of residual metaplasia after mucosal ablation or resection of GI neoplasia in Barrett's esophagus. Gastrointest Endosc. 2012;76(3):539–47.

    Article  PubMed  Google Scholar 

  69. Gorospe EC, Leggett CL, Sun G, Anderson MA, Gupta M, Penfield JD, et al. Diagnostic performance of two confocal endomicroscopy systems in detecting Barrett's dysplasia: a pilot study using a novel bioprobe in ex vivo tissue. Gastrointest Endosc. 2012;76(5):933–8.

    Article  PubMed  Google Scholar 

  70. Buchner AM, Shahid MW, Heckman MG, Krishna M, Ghabril M, Hasan M, et al. Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology. 2010;138(3):834–42.

    Article  PubMed  Google Scholar 

  71. Su P, Liu Y, Lin S, Xiao K, Chen P, An S, He J, Bai Y. Efficacy of Confocal Laser Endomicroscopy for Discriminating Colorectal Neoplasms from Non-neoplasms: a Systematic Review and Meta-analysis. Colorectal Dis. 2012 Sep 24.

  72. Sanduleanu S, Driessen A, Gomez-Garcia E, Hameeteman W, de Bruïne A, Masclee A. In vivo diagnosis and classification of colorectal neoplasia by chromoendoscopy-guided confocal laser endomicroscopy. Clin Gastroenterol Hepatol. 2010;8(4):371–8.

    Article  PubMed  Google Scholar 

  73. Kuiper T, van den Broek FJ, van Eeden S, Fockens P, Dekker E. Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions. Am J Gastroenterol. 2012;107(4):543–50.

    Article  PubMed  CAS  Google Scholar 

  74. Kiesslich R, Goetz M, Lammersdorf K, Schneider C, Burg J, Stolte M, et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology. 2007;132(3):874.

    Article  PubMed  Google Scholar 

  75. Hurlstone DP, Thomson M, Brown S, Tiffin N, Cross SS, Hunter MD. Confocal endomicroscopy in ulcerative colitis: differentiating dysplasia-associated lesional mass and adenoma-like mass. Clin Gastroenterol Hepatol. 2007;5(10):1235–41.

    Article  PubMed  Google Scholar 

  76. Rispo A, Castiglione F, Staibano S, Esposito D, Maione F, Siano M, et al. Diagnostic accuracy of confocal laser endomicroscopy in diagnosing dysplasia in patients affected by long-standing ulcerative colitis. World J Gastrointest Endosc. 2012;4(9):414–20.

    Article  PubMed  Google Scholar 

  77. Li Z, Yu T, Zuo XL, Gu XM, Zhou CJ, Ji R, et al. Confocal laser endomicroscopy for in vivo diagnosis of gastric intraepithelial neoplasia: a feasibility study. Gastrointest Endosc. 2010;72(6):1146–53.

    Article  PubMed  Google Scholar 

  78. Li WB, Zuo XL, Li CQ, Zuo F, Gu XM, Yu T, et al. Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions. Gut. 2011;60(3):299–306.

    Article  PubMed  Google Scholar 

  79. Meining A, Chen YK, Pleskow D, Stevens P, Shah RJ, Chuttani R, et al. Direct visualization of indeterminate pancreaticobiliary strictures with probe-based confocal laser endomicroscopy: a multicenter experience. Gastrointest Endosc. 2011;74(5):961–8.

    Article  PubMed  Google Scholar 

  80. Inoue H, Sasajima K, Kaga M, Sugaya S, Sato Y, Wada Y, et al. Endoscopic in vivo evaluation of tissue atypia in the esophagus using a newly designed integrated endocytoscope: a pilot trial. Endoscopy. 2006;38(9):891–5.

    Article  PubMed  CAS  Google Scholar 

  81. Pohl H, Koch M, Khalifa A, Papanikolaou IS, Scheiner K, Wiedenmann B, et al. Evaluation of endocytoscopy in the surveillance of patients with Barrett's esophagus. Endoscopy. 2007;39(6):492–6.

    Article  PubMed  CAS  Google Scholar 

  82. Cipolletta L, Bianco MA, Rotondano G, Piscopo R, Meucci C, Prisco A, et al. Endocytoscopy can identify dysplasia in aberrant crypt foci of the colorectum: a prospective in vivo study. Endoscopy. 2009;41(2):129–32.

    Article  PubMed  CAS  Google Scholar 

  83. Kudo SE, Wakamura K, Ikehara N, Mori Y, Inoue H, Hamatani S. Diagnosis of colorectal lesions with a novel endocytoscopic classification - a pilot study. Endoscopy. 2011;43(10):869–75.

    Article  PubMed  Google Scholar 

  84. Kara MA, Peters FP, Ten Kate FJ, Van Deventer SJ, Fockens P, Bergman JJ. Endoscopic video autofluorescence imaging may improve the detection of early neoplasia in patients with Barrett's esophagus. Gastrointest Endosc. 2005;61(6):679.

    Article  PubMed  Google Scholar 

  85. Curvers WL, Singh R, Song LM, Wolfsen HC, Ragunath K, Wang K, et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut. 2008;57(2):167.

    Article  PubMed  CAS  Google Scholar 

  86. Curvers WL, Herrero LA, Wallace MB, Wong Kee Song LM, Ragunath K, Wolfsen HC, et al. Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett's esophagus. Gastroenterology. 2010;139(4):1106–14.

    Article  PubMed  Google Scholar 

  87. Curvers WL, van Vilsteren FG, Baak LC, Böhmer C, Mallant-Hent RC, Naber AH, et al. Endoscopic trimodal imaging versus standard video endoscopy for detection of early Barrett's neoplasia: a multicenter, randomized, crossover study in general practice. Gastrointest Endosc. 2011;73(2):195–203.

    Article  PubMed  Google Scholar 

  88. Ishihara R, Inoue T, Hanaoka N, Takeuchi Y, Tsujii Y, Kanzaki H, et al. Autofluorescence imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia: a phase II study. J Gastroenterol Hepatol. 2012;27(1):86–90.

    Article  PubMed  Google Scholar 

  89. Ohkawa A, Miwa H, Namihisa A, Kobayashi O, Nakaniwa N, Ohkusa T, et al. Diagnostic performance of light-induced fluorescence endoscopy for gastric neoplasms. Endoscopy. 2004;36(6):515–21.

    Article  PubMed  CAS  Google Scholar 

  90. Kato M, Kaise M, Yonezawa J, Yoshida Y, Tajiri H. Autofluorescence endoscopy versus conventional white light endoscopy for the detection of superficial gastric neoplasia: a prospective comparative study. Endoscopy. 2007;39(11):937–41.

    Article  PubMed  CAS  Google Scholar 

  91. Matsuda T, Saito Y, Fu KI, Uraoka T, Kobayashi N, Nakajima T, et al. Does autofluorescence imaging videoendoscopy system improve the colonoscopic polyp detection rate?–a pilot study. Am J Gastroenterol. 2008;103(8):1926–32.

    Article  PubMed  Google Scholar 

  92. Takeuchi Y, Inoue T, Hanaoka N, Higashino K, Iishi H, Chatani R, et al. Autofluorescence imaging with a transparent hood for detection of colorectal neoplasms: a prospective, randomized trial. Gastrointest Endosc. 2010;72(5):1006–13.

    Article  PubMed  Google Scholar 

  93. Kuiper T, van den Broek FJ, Naber AH, van Soest EJ, Scholten P, Mallant-Hent RC, et al. Endoscopic trimodal imaging detects colonic neoplasia as well as standard video endoscopy. Gastroenterology. 2011;140(7):1887–94.

    Article  PubMed  Google Scholar 

  94. Sato R, Fujiya M, Watari J, Ueno N, Moriichi K, Kashima S, et al. The diagnostic accuracy of high-resolution endoscopy, autofluorescence imaging and narrow-band imaging for differentially diagnosing colon adenoma. Endoscopy. 2011;43(10):862–8.

    Article  PubMed  CAS  Google Scholar 

  95. Ignjatovic A, East JE, Guenther T, Hoare J, Morris J, Ragunath K, et al. What is the most reliable imaging modality for small colonic polyp characterization? Study of white-light, autofluorescence, and narrow-band imaging. Endoscopy. 2011;43(2):94–9.

    Article  PubMed  CAS  Google Scholar 

  96. van den Broek FJ, Fockens P, van Eeden S, Reitsma JB, Hardwick JC, Stokkers PC, et al. Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut. 2008;57(8):1083–9.

    Article  PubMed  Google Scholar 

  97. Matsumoto T, Nakamura S, Moriyama T, Hirahashi M, Iida M. Autofluorescence imaging colonoscopy for the detection of dysplastic lesions in ulcerative colitis: a pilot study. Colorectal Dis. 2010 Oct;12(10 Online):e291-7.

  98. Hatta W, Uno K, Koike T, Iijima K, Asano N, Imatani A, et al. Prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma. Gastrointest Endosc. 2012;76(3):548–55.

    Article  PubMed  Google Scholar 

  99. Evans JA, Poneros JM, Bouma BE, Bressner J, Halpern EF, Shishkov M, et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett's esophagus. Clin Gastroenterol Hepatol. 2006;4(1):38.

    Article  PubMed  Google Scholar 

  100. Tsai TH, Zhou C, Tao YK, Lee HC, Ahsen OO, Figueiredo M, et al. Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett's esophagus radiofrequency ablation treatment response (with videos). Gastrointest Endosc. 2012;76(6):1104–12.

    Article  PubMed  Google Scholar 

  101. Arvanitakis M, Hookey L, Tessier G, Demetter P, Nagy N, Stellke A. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy. 2009;41(8):696.

    Article  PubMed  CAS  Google Scholar 

  102. Goetz M, Wang TD. Molecular imaging in gastrointestinal endoscopy. Gastroenterology. 2010;138(3):828–33.

    Article  PubMed  CAS  Google Scholar 

  103. Pierce MC, Javier DJ, Richards-Kortum R. Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer. 2008;123(9):1979–90.

    Article  PubMed  CAS  Google Scholar 

  104. Barrett T et al. In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res. 2007;13(22 Pt 1):6639–48.

    Article  PubMed  CAS  Google Scholar 

  105. Goetz M et al. In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology. 2010;138(2):435–46.

    Article  PubMed  CAS  Google Scholar 

  106. DaCosta RS, Wilson BC, Marcon NE. Fluorescence and spectral imaging. Sci World J. 2007;7:2046–71.

    Article  Google Scholar 

  107. Marten K et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology. 2002;122(2):406–14.

    Article  PubMed  Google Scholar 

  108. Urano Y et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med. 2009;15(1):104–9.

    Article  PubMed  CAS  Google Scholar 

  109. Hsiung PL et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med. 2008;14(4):454–8.

    Article  PubMed  CAS  Google Scholar 

  110. Li M et al. Affinity peptide for targeted detection of dysplasia in Barrett's esophagus. Gastroenterology. 2010;139(5):1472–80.

    Article  PubMed  CAS  Google Scholar 

  111. Li Z et al. In vivo molecular imaging of gastric cancer by targeting MG7 antigen with confocal laser endomicroscopy. Endoscopy. 2013;45(2):79–85.

    Article  PubMed  CAS  Google Scholar 

  112. Liu, J., et al., In vivo molecular imaging of epidermal growth factor receptor in patients with colorectal neoplasia using confocal laser endomicroscopy. Cancer Lett, 2012.

  113. Bird-Lieberman EL et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat Med. 2012;18(2):315–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

P. Urquhart declares that he has no conflict of interest.

R. DaCosta declares that he has no conflict of interest.

N. Marcon declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Marcon.

Additional information

This article is part of the Topical Collection on GI Oncology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urquhart, P., DaCosta, R. & Marcon, N. Endoscopic Mucosal Imaging of Gastrointestinal Neoplasia in 2013. Curr Gastroenterol Rep 15, 330 (2013). https://doi.org/10.1007/s11894-013-0330-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-013-0330-8

Keywords

Navigation