Skip to main content

Advertisement

Log in

Recent advances in intestinal iron transport

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Our understanding of intestinal iron absorption and its regulation has expanded enormously in recent years. Dietary iron crosses the enterocyte brush border membrane through the transporter DMTI after first being reduced by the ferric reductase Dcytb. The subsequent movement of iron across the basolatera1 membrane and into the circulation is mediated by ferroportin1 in conjunction with the iron oxidase hephaestin. The activity of ferroportin1 is controlled by the liver-derived peptide hepcidin, and the expression of hepcidin in turn is influenced by plasma transferrin saturation via a pathway that involves HFE, TfR2, and hemojuvelin. Future studies investigating how these molecules interact will provide a comprehensive understanding of this essential physiologic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Carpenter CE, Mahoney AW: Contributions of heme and nonheme iron to human nutrition. Crit Rev Food Sci Nutr 1992, 31:333–367.

    Article  PubMed  CAS  Google Scholar 

  2. Nand S, Tanvetyanon T: Proton pump inhibitors and iron deficiency: Is the connection real? South Med J 2004, 97:799.

    Article  PubMed  Google Scholar 

  3. DuBois S, Kearney DJ: Iron-deficiency anemia and Helicobacter pylori infection: a review of the evidence. Am J Gastroenterol 2005, 100:453–459.

    Article  PubMed  Google Scholar 

  4. Dub’e C, Rostom A, Sy R, et al.: The prevalence of celiac disease in average-risk and at-risk Western European populations: a systematic review. Gastroenterology 2005, 128:S57-S67.

    Article  Google Scholar 

  5. McKie AT, Barrow D, Latunde-Dada GO, et al.: An ironregulated ferric reductase associated with the absorption of dietary iron. Science 2001, 291:1755–1759.

    Article  PubMed  CAS  Google Scholar 

  6. Fleming MD, Trenor III CC, Su MA, et al.: Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 1997, 16:383–386.

    PubMed  CAS  Google Scholar 

  7. Gunshin H, Mackenzie B, Berger UV, et al.: Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997, 388:482–488.

    Article  PubMed  CAS  Google Scholar 

  8. McKie AT, Marciani P, Rolfs A, et al.: A novel duodenal ironregulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000, 5:299–309.

    Article  PubMed  CAS  Google Scholar 

  9. Donovan A, Brownlie A, Zhou Y, et al.: Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 2000, 403:776–781.

    Article  PubMed  CAS  Google Scholar 

  10. Abboud S, Haile DJ: A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 2000, 275:19906–19912.

    Article  PubMed  CAS  Google Scholar 

  11. Vulpe CD, Kuo Y, Murphy TL, et al.: Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 1999, 21:195–199.

    Article  PubMed  CAS  Google Scholar 

  12. Nicolas G, Bennoun M, Devaux I, et al.: Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 2001, 98:8780–8785. Shows that hepcidin plays a major role in the regulation of iron homeostasis.

    Article  PubMed  CAS  Google Scholar 

  13. Bridle KR, Frazer DM, Wilkins SJ, et al.: Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homeostasis. Lancet 2003, 361:669–673. Demonstrates that the disruption of HFE affects hepcidin expression in humans.

    Article  PubMed  CAS  Google Scholar 

  14. Nemeth E, Roetto A, Garozzo G, et al.: Hepcidin is decreased in TFR2 hemochromatosis. Blood 2005, 105:1803–1806. Demonstrates that mutations in TfR2 lead to a decrease in hepcidin expression, indicating that, like HFE, TfR2 lies upstream of hepcidin in the iron regulatory pathway.

    Article  PubMed  CAS  Google Scholar 

  15. Papanikolaou G, Samuels ME, Ludwig EH, et al.: Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 2004, 36:77–82. Describes the discovery of hemojuvelin.

    Article  PubMed  CAS  Google Scholar 

  16. Shayeghi M, Latunde-dada GO, Oakhill JS, et al.: Identification of an intestinal heme transporter. Cell 2005, in press.

  17. Raffin SB, Woo CH, Roost KT, et al.: Intestinal absorption of hemoglobin iron: heme cleavage by mucosal heme oxygenase. J Clin Invest 1974, 54:1344–1352.

    Article  PubMed  CAS  Google Scholar 

  18. Theil EC: Iron, ferritin, and nutrition. Annu Rev Nutr 2004, 24:327–343.

    Article  PubMed  CAS  Google Scholar 

  19. Fleming MD, Romano MA, Su MA, et al.: NRAMP2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A 1998, 95:1148–1153.

    Article  PubMed  CAS  Google Scholar 

  20. Mackenzie B, Hediger MA: SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1. Pflugers Arch 2004, 447:571–579.

    Article  PubMed  CAS  Google Scholar 

  21. Frazer DM, Inglis HR, Wilkins SJ, et al.: Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut 2004, 53:1509–1515.

    Article  PubMed  CAS  Google Scholar 

  22. Lee PL, Gelbart T, West C, et al.: The human Nramp2 gene: characterization of the gene structure, alternative splicing, promotor region and polymorphisms. Blood Cells Mol Dis 1998, 24:199–215.

    Article  PubMed  CAS  Google Scholar 

  23. Trinder D, Oates PS, Thomas C, et al.: Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 2000, 46:270–276.

    Article  PubMed  CAS  Google Scholar 

  24. Mims MP, Guan Y, Pospisilova D, et al.: Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood 2005, 105:1337–1342.

    Article  PubMed  CAS  Google Scholar 

  25. McLaren GD, Nathanson MH, Jacobs A, et al.: Regulation of intestinal iron absorption and mucosal iron kinetics in hereditary hemochromatosis. J Lab Clin Med 1991, 117:390–401.

    PubMed  CAS  Google Scholar 

  26. Donovan A, Lima CA, Pinkus JL, et al.: The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism 2005, 1:191–200. Demonstrates that ferroportin1 is the main iron exporter in enterocytes, macrophages, and hepatocytes.

    Article  PubMed  CAS  Google Scholar 

  27. Frazer DM, Vulpe CD, McKie AT, et al.: Cloning and gastrointestinal expression of hephaestin: relationship to other iron transport proteins. Am J Physiol 2001, 281:G931-G939.

    CAS  Google Scholar 

  28. Chen H, Attieh ZK, Su T, et al.: Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood 2004, 103:3933–3939.

    Article  PubMed  CAS  Google Scholar 

  29. Kuo YM, Su T, Chen H, et al.: Mislocalisation of hephaestin, a multicopper ferroxidase involved in basolateral intestinal iron transport, in the sex linked anaemia mouse. Gut 2004, 53:201–206.

    Article  PubMed  CAS  Google Scholar 

  30. Pietrangelo A: The ferroportin disease. Blood Cell Mol Dis 2004, 32:131–138.

    Article  CAS  Google Scholar 

  31. Drakesmith H, Schimanski LM, Ormerod E, et al.: Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood 2005, 106:1092–1097.

    Article  PubMed  CAS  Google Scholar 

  32. Finch C: Regulators of iron balance in humans. Blood 1994, 84:1697–1702.

    PubMed  CAS  Google Scholar 

  33. Anderson GJ, Vulpe CD: Regulation of intestinal iron transport. In Molecular and Cellular Iron Transport. Edited by Templeton DM. New York: Marcel Dekker, Inc; 2002:559–598.

    Google Scholar 

  34. Jurado RL: Iron, infections, and anemia of inflammation. Clin Infect Dis 1997, 25:888–895.

    PubMed  CAS  Google Scholar 

  35. Feder JN, Gnirke A, Thomas W, et al.: A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996, 13:399–408.

    Article  PubMed  CAS  Google Scholar 

  36. Ajioka RS, Kushner JP: Hereditary hemochromatosis. Semin Hematol 2002, 39:235–41.

    Article  PubMed  Google Scholar 

  37. Camaschella C, Roetto A, Calì A, et al.: The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet 2000, 25:14–15.

    Article  PubMed  CAS  Google Scholar 

  38. Roetto A, Papanikolaou G, Politou M, et al.: Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 2003, 33:21–22. Shows that mutations in hepcidin lead to severe iron loading in humans.

    Article  PubMed  CAS  Google Scholar 

  39. Kawabata H, Yang R, Hirama T, et al.: Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family. J Biol Chem 1999, 274:20826–20832.

    Article  PubMed  CAS  Google Scholar 

  40. Park CH, Valore EV, Waring AJ, Ganz T: Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001, 276:7806–7810.

    Article  PubMed  CAS  Google Scholar 

  41. Pigeon C, Ilyin G, Courselaud B, et al.: A new mouse liverspecific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001, 276:7811–7819.

    Article  PubMed  CAS  Google Scholar 

  42. Nicolas G, Bennon M, Porteu A, et al.: Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A 2002, 99:4596–4601.

    Article  PubMed  CAS  Google Scholar 

  43. Nicolas G, Chauvet C, Viatte L, et al.: The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002, 110:1037–1044.

    Article  PubMed  CAS  Google Scholar 

  44. Millard KN, Frazer DM, Wilkins SJ, Anderson GJ: Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat. Gut 2004, 53:655–660.

    Article  PubMed  CAS  Google Scholar 

  45. Frazer DM, Wilkins SJ, Becker EM, et al.: Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 2002, 123:835–844.

    Article  PubMed  CAS  Google Scholar 

  46. Nemeth E, Tuttle MS, Powelson J, et al.: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306:2090–2093. Explains the inhibitory role of hepcidin on cellular iron release by demonstrating that hepcidin interacts directly with ferroportin1, causing it to be internalized and degraded.

    Article  PubMed  CAS  Google Scholar 

  47. Parkkila S, Waheed A, Britton RS, et al.: Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc Natl Acad Sci U S A 1997, 94:13198–13202.

    Article  PubMed  CAS  Google Scholar 

  48. Ahmad KA, Ahmann JR, Migas MC, et al.: Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis 2002, 29:361–366.

    Article  PubMed  CAS  Google Scholar 

  49. Nicolas G, Viatte L, Lou DQ, et al.: Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet 2003, 34:97–101. Shows that HFE lies upstream of hepcidin in the iron regulatory pathway.

    Article  PubMed  CAS  Google Scholar 

  50. Frazer DM, Anderson GJ: The orchestration of body iron intake: How and where do enterocytes receive their cues? Blood Cells Mol Dis 2003, 30:288–297. Provides an in-depth analysis of the regulation of iron absorption, highlighting the importance of the liver and making the case for body signals to alter absorption directly affecting the mature enterocytes.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G.J., Frazer, D.M. Recent advances in intestinal iron transport. Curr Gastroenterol Rep 7, 365–372 (2005). https://doi.org/10.1007/s11894-005-0005-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-005-0005-1

Keywords

Navigation