Skip to main content

Advertisement

Log in

Advances in imaging for pancreatic disease

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Pancreatic imaging is an essential tool in the early diagnosis and staging of pancreatic disease. This review analyzes the most recent advances in pancreatic imaging. The specific modalities discussed include helical computed tomography (HCT) and multislice CT (MSCT), CT angiography, magnetic resonance imaging (MRI), magnetic resonance cholangiopancreatography (MRCP), and positron emission tomography (PET). At present, MSCT is generally viewed as the most efficient modality for initial detection and staging of pancreatic carcinoma, with an accuracy rate of about 95% to 97% for initial detection and virtually 100% for staging. CT is also the initial imaging modality used in evaluation of acute pancreatitis. However, recently, MRI has been viewed increasingly as a more precise diagnostic tool in this subgroup of patients. MRCP has been accepted as the primary imaging technique in the diagnosis of chronic pancreatitis. PET imaging, on the other hand, has an increasing role in the staging of pancreatic carcinoma, for which it may be the modality of choice in detection of extrapancreatic metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Choi BI, Chung MJ, Han JK, et al.: Detection of pancreatic adenocarcinoma: relative value of arterial and late phases of spiral CT. Abdom Imaging 1997, 22:199–203.

    Article  PubMed  CAS  Google Scholar 

  2. Diehl SJ, Lehmann KJ, Sadick M, et al.: Pancreatic cancer: value of dual-phase helical CT in assessing resectability. Radiology 1998, 206:373–378.

    PubMed  CAS  Google Scholar 

  3. Tabuchi T, Itoh K, Ohshio G, et al.: Tumor staging of pancreatic adenocarcinoma using early and late-phase helical CT. AJR Am J Roentgenol 1999, 173:375–380.

    PubMed  CAS  Google Scholar 

  4. Keogan MT, McDermott VG, Paulson EK, et al.: Pancreatic malignancy: effect of dual-phase helical CT in tumor detection and vascular opacification. Radiology 1997, 205:513–518.

    PubMed  CAS  Google Scholar 

  5. Graf O, Boland GW, Warshaw AL, et al.: Arterial versus portal venous helical CT for revealing pancreatic adenocarcinoma: conspicuity of tumor and critical vascular anatomy. AJR Am J Roentgenol 1997, 169:119–123.

    PubMed  CAS  Google Scholar 

  6. Boland GW, O‘Malley ME, Saez M, et al.: Pancreatic-phase versus portal-vein phase helical CT of the pancreas: optimal temporal window for evaluation of pancreatic adenocarcinoma. AJR Am J Roentgenol 1999, 172:605–608.

    PubMed  CAS  Google Scholar 

  7. McNulty N, Francis IR, Platt JF, et al.: Multi-detector row helical CT of the pancreas: effect of contrast-enhanced multiphasic imaging on enhancement of the pancreas, peripancreatic vasculature, and pancreatic adenocarcinoma. Radiology 2001, 220:97–102. In this study, 49 patients with normal pancreas and 28 patients with proven pancreatic adenocarcinoma were examined by multidetectorrow HCT with different vascular phases in order to determine the optimal technique to examine the pancreas. The authors conclude that a combination of pancreatic parenchymal phase and portal venous phase imaging is sufficient for detection of pancreatic adenocarcinoma. Arterial phase imaging can be reserved for patients in whom CT angiography is required.

    PubMed  CAS  Google Scholar 

  8. Raptopoulos V, Steer ML, Sheiman RG, et al.: The use of helical CT and CT angiography to predict vascular involvement from pancreatic cancer: correlation with finidings at surgery. AJR Am J Roentgenol 1997, 168:971–977.

    PubMed  CAS  Google Scholar 

  9. Baek SY, Sheafor DH, Keogan MT, et al.: Two-dimensional multiplanar and three-dimensional volume-rendered vascular CT in pancreatic carcinoma: interobserver agreement and comparison with standard helical techniques. AJR Am J Roentgenol 2001, 176:1467–1473.

    PubMed  CAS  Google Scholar 

  10. Fishman EK, Horton KM, Urban BA: Multidetector CT angiography in the evaluation of pancreatic carcinoma: preliminary observation. J Comput Assist Tomogr 2000, 24:849–853.

    Article  PubMed  CAS  Google Scholar 

  11. Pavone P, Mitchell DG, Leonetti F, et al.: Pancreatic B-cell tumors: MRI. J Comput Assist Tomogr 1993, 17:403–407.

    Article  PubMed  CAS  Google Scholar 

  12. Chung MJ, Choi BI, Han JK, et al.: Functioning islet cell tumor of the pancreas: localization with dynamic spiral CT. Acta Radiol 1997, 38:135–138.

    Article  PubMed  CAS  Google Scholar 

  13. Procacci C, Carbognin G, Accordini S, et al.: Nonfunctioning endocrine tumors of the pancreas: possibilities of spiral CT characterization. Eur Radiol 2001, 11:1626–1630.

    Article  PubMed  CAS  Google Scholar 

  14. Ros PR, Hamrick-Turner JE, Chiechi MV, et al.: Cystic masses of the pancreas. Radiographics 1992, 12:673–686.

    PubMed  CAS  Google Scholar 

  15. Taouli B, Vilgrain V, Vullierme MP, et al.: Intraductal papillary mucinous tumors of the pancreas: helical CT with histopathologic correlation. Radiology 2000, 217:757–764.

    PubMed  CAS  Google Scholar 

  16. Robinson PJA, Sheridan MB: Pancreatitis: computed tomography and magnetic resonance imaging. Eur Radiol 2000, 10:401–408.

    Article  PubMed  CAS  Google Scholar 

  17. Elmas N: The role of diagnostic radiology in pancreatitis. Eur J Radiol 2001, 38:120–132.

    Article  PubMed  CAS  Google Scholar 

  18. Kim T, Murakami T, Takamura M, et al.: Pancreatic mass due to chronic pancreatitis: correlation of CT and MR imaging features with pathologic findings. AJR Am J Roentgenol 2001, 177:367–371. Two different enhancement patterns were reported between twophase HCT and dynamic MRI of masses due to chronic pancreatitis. They appeared as hypoenhancing demarcated masses, or as isoenhancing demarcated masses on pancreatic phase images, probably related to the grade of fibrosis. Whereas the second pattern is easily distinguishable from that of adenocarcinoma, the first one can mimic neoplasm.

    PubMed  CAS  Google Scholar 

  19. Semelka RC, Kroeker MA, Shoenut JP, et al.: Pancreatic disease: prospective comparison of CT, ERCP and 1.5 Tesla MR imaging with dynamic gadolinium enhancement and fat suppression. Radiology 1991, 181:785–791.

    PubMed  CAS  Google Scholar 

  20. Gabata T, Matsui O, Kadoya M, et al.: Small pancreatic adenocarcinoma: efficacy of MR imaging with fatsuppression and gadolinium enhancement. Radiology 1994, 193:683–688.

    PubMed  CAS  Google Scholar 

  21. Ichikawa T, Haradome H, Hachiya J, et al.: Pancreatic ductal adenocarcinoma: preoperative assessment with helical CT versus dynamic MR imaging. Radiology 1997, 202:655–662.

    PubMed  CAS  Google Scholar 

  22. Nishiharu T, Yamashota Y, Abe Y, et al.: Local extension of pancreatic carcinoma: assessment with thin-section helical CT versus breath-hold fast MR imaging: ROC analysis. Radiology 1999, 212:445–452.

    PubMed  CAS  Google Scholar 

  23. Kanematsu M, Shiratori Y, Hoshi H, et al.: Pancreas and peripancreatic vessels: effect of imaging delay on gadolinium enhancement at dynamic gradient-recalled-echo MR imaging. Radiology 2000, 215:95–102. In this study, 75 patients suspected of having pancreatobiliary disease, but without pancreatic malignancies, underwent dynamic GRE MRI in order to define the best timing for image acquisition in dynamic MRI. The authors underlined the importance of the test-bolus imaging used in their protocol. The authors concluded that a biphasic dynamic MRI, at 15 and 45 seconds (or later) after the arrival of contrast material in the abdominal aorta, may be a practical way to obtain pancreatic-and peripancreatic vascular-enhancement images during a single session of high-spatial-resolution dynamic GRE MRI.

    PubMed  CAS  Google Scholar 

  24. Mayosmith WW, Scima W, Saini S, et al.: Pancreatic enhancement and pulse sequence analysis using low-dose mangafodipir trisodium. AJR Am J Roentgenol 1998, 170:649–652.

    CAS  Google Scholar 

  25. Rieber A, Tomczak R, Nussle K, et al.: MRI with mangafodipir trisodium in the detection of pancreatic tumours: comparison with helical CT. Br J Radiol 2000, 73:1165–1169. This study compared Mn-DPDP-enhanced MRI with spiral CT in the detection of pancreatic tumors. The results showed that spiral CT is superior to Mn-DPDP-enhanced MRI in detection of pancreatic tumors. Nevertheless, the level of confidence in the diagnosis of the lesion was significantly increased by administration of Mn-DPDP. Moreover, Mn-DPDP administration significantly increased the image quality of MRI.

    PubMed  CAS  Google Scholar 

  26. Schwartz LH, Coakley FV, Sun Y, et al.: Neoplastic pancreatobiliary duct obstruction: evaluation with breath-hold MR colangiopancreatography. AJR Am J Roentgenol 1998, 170:1491–1495.

    PubMed  CAS  Google Scholar 

  27. Kim TK, Han JK, Kim SJ, et al.: MR colangiopancreatography: comparison between half-Fourier acquisition single-shot turbo spin-echo and two-dimensional turbo spin-echo pulse sequences. Abdom Imaging 1998, 23:398–403.

    Article  PubMed  CAS  Google Scholar 

  28. Kato J, Kawamura Y, Watanabe T, et al.: Examination of intra-gastrointestinal tract signal elimination in MRCP: combined use of T1-shortening positive contrast agent and single-shot fast inversion recovery. J Magn Reson Imaging 2001, 13:738–743.

    Article  PubMed  CAS  Google Scholar 

  29. Malcolm PN, Brown JJ, Hahn P, et al.: The clinical value of ferric ammonium citrate: a positive oral contrast agent for T1-weighted MR imaging of the upper abdomen. J Magn Reson Im 2000, 12:702–707.

    Article  CAS  Google Scholar 

  30. Arslan A, Geitung JT, Viktil E, et al.: Comparison of 2D single-shot turbo spin-echo MR cholangiopancreatography with endoscopic retrograde cholangiopancreatography. Acta Radiol 2000, 41:621–626.

    Article  PubMed  CAS  Google Scholar 

  31. Tang Y, Yamashita, Arakawa A, et al.: Pancreaticobiliary ductal system: value of half-Fourier rapid acquisition with relaxation enhancement MR cholagiopancreatography for postoperative evaluation. Radiology 2000, 215:81–88.

    PubMed  CAS  Google Scholar 

  32. Thoeni RF, Mueller-Lisse UG, Chan R, et al.: Detection of small, functional islet cell tumors in the pancreas: selection of MR imaging sequences for optimal sensitivity. Radiology 2000, 214:483–490. In this study, 28 patients suspected of having islet cells tumors were examined using different sequences in MRI (with and without gadolinium administration) in order to determine which of them offers the optimal sensitivity. The authors recommend the use of T2-weighted fast spin-echo initially, followed by nonenhanced T1-weighted spoiled GRE with fat-suppression imaging. The use of fast multiplanar spoiled GRE after contrast media administration should be reserved only for cases in which the basal protocol is not able to show any lesion.

    PubMed  CAS  Google Scholar 

  33. Scott J, Martin I, Redhead D, et al.: Mucinous cystic neoplasms of the pancreas: imaging features and diagnostic difficulties. Clin Radiol 2000, 55:187–192.

    Article  PubMed  CAS  Google Scholar 

  34. Sugiyama M, Atomi Y, Hachiya J: Intraductal papillary tumors of the pancreas: evaluation with magnetic resonance colangiopancreatography. Am J Gastroenterol 1998, 93:156–159.

    Article  PubMed  CAS  Google Scholar 

  35. Amano Y, Oishi T, Takahashi M: Nonenhanced magnetic resonance imaging of mild acute pancreatitis. Abdom Imaging 2001, 26:59–63.

    Article  PubMed  CAS  Google Scholar 

  36. Lecesne R, Tourel P, Bret PM, et al.: Acute pancreatitis: interobserver agreement and correlation of CT and MR cholangiopancreatography with outcome. Radiology 1999, 211:727–735.

    PubMed  CAS  Google Scholar 

  37. Ward J, Chalmers AG, Guthrie AJ, et al.: T2-weighted and dynamic enhnaced MRI in acute pancreatitis: comparison with contrast-enhanced CT. Clin Radiol 1997, 52:109–114.

    Article  PubMed  CAS  Google Scholar 

  38. Lecesne R, Laurent F, Drouillard J, et al.: Chronic pancreatitis. In Radiology of the Pancreas, edn 2. Edited by Baert AL, Delorme G, Van Hoe L. Heidelberg: Springer-Verlag; 1999:145–180.

    Google Scholar 

  39. Sica GT, Braver J, Cooney MJ, et al.: Comparison of endoscopic retrograde cholangiopancreatigraphy with MR cholangiopancreatography in patients with pancreatitis. Radiology 1999, 210:605–610.

    PubMed  CAS  Google Scholar 

  40. Matos C, Metens T, Deviere J, et al.: Pancreatic duct: morphologic and functional evaluation with dynamic MR pancreatography after secretin stimulation. Radiology 1997, 203:435–441.

    PubMed  CAS  Google Scholar 

  41. Nanashima A, Yamaguchi H, Fukuda T, et al.: Evaluation of pancreatic secretion after administration of secretin: application of magnetic resonance imaging. J Gastroenterol Hepatol 2001, 16:87–92.

    Article  PubMed  CAS  Google Scholar 

  42. Johnson PT, Outwater EK: Pancreatic carcinoma versus chronic pancreatitis: dynamic MR imaging. Radiology 1999, 212:213–218.

    PubMed  CAS  Google Scholar 

  43. Keogan MT, Tyler D, Clark L, et al.: Diagnosis of pancreatic carcinoma: role of FDG PET. AJR Am J Roentgenol 1998, 171:1565–1570.

    PubMed  CAS  Google Scholar 

  44. Delbeke D, Rose DM, Chapman WC, et al.: Optimal interpretation of FDG-PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med 1999, 40:1784–1791.

    PubMed  CAS  Google Scholar 

  45. Rose MD, Debase D, Beauchamp D, et al.: 18-Fluorodeoxyglucosepositron emission tomography in the management of patients with suspected pancreatic cancer. Ann Surg 1998, 229:729–738.

    Article  Google Scholar 

  46. Jadvar H, Fishman AJ: Evaluation of pancreatic carcinoma with FDG PET. Abdom Imaging 2001, 26:254–259.

    Article  PubMed  CAS  Google Scholar 

  47. Franke C, Klapdor R, Meyerhoff K, et al.: 18-FDG positron emission tomography of the pancreas: diagnostic benefit in the follow-up of pancreatic adenocarcinoma. Anticancer Res 1999, 19:2437–2442.

    PubMed  CAS  Google Scholar 

  48. van Heertum EL, Fawwaz RA: The role of nuclear medicine in the evaluation of pancreatic disease. Surg Clin North Am 2001, 81:345–357.

    Article  PubMed  Google Scholar 

  49. Shreve PD: Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 1998, 25:259–264.

    Article  PubMed  CAS  Google Scholar 

  50. Sendler A, Avril N, Helmberger H, et al.: Preoperative evaluation of pancreatic masses with positron emission tomography using 18F-fluorodeoxyglucose: diagnostic limitations. World J Surg 2000, 24:1121–1129. In this study, 42 patients with a pancreatic mass were examined using F-18 FDG PET. Data showed that PET imaging provides only fair diagnostic accuracy (69%) for characterizing enlarged pancreatic masses, and does not allow exclusion of malignant tumors. Moreover, the results of this study demonstrate that the number of invasive procedures is not significantly reduced by PET imaging.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frate, C.D., Zanardi, R., Mortele, K. et al. Advances in imaging for pancreatic disease. Curr Gastroenterol Rep 4, 140–148 (2002). https://doi.org/10.1007/s11894-002-0051-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-002-0051-x

Keywords

Navigation