Skip to main content

Advertisement

Log in

Management of Diabetes in Patients Undergoing Bariatric Surgery

  • Obesity (KM Gadde, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The number of bariatric surgeries for patients with type 1 or type 2 diabetes continues to grow. Clinicians are challenged to choose therapies that reach glycemic targets without inducing adverse effects in post-bariatric patients without published guidelines. This review evaluates data supporting the best strategies for diabetes management in patients undergoing bariatric surgery.

Recent Findings

Though few clinical trials have evaluated the safety and effectiveness of different glucose-lowering therapies following bariatric surgery, remission of diabetes or reduced medications is an established benefit of bariatric surgery. Adverse events including diabetic ketoacidosis in post-bariatric patients on sodium-glucose co-transporter 2 (SGLT2) inhibitors or inadequate insulin have been reported in patient's with both type 1 and type 2 diabetes. Metformin, glucagon-like peptide-1 (GLP-1) agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, SGLT2 inhibitors, insulin, and sulfonylureas have been used successfully in the perioperative period for other surgeries and guidelines recommend adjusting the doses of these medications especially in the perioperative period.

Summary

Clinicians should favor weight-neutral or weight-loss promoting therapies in post-bariatric surgery patients such as medical nutrition therapy, metformin, GLP-1 agonists, SGLT2 inhibitors, and DPP-4 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGMM, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77. https://doi.org/10.2337/dc16-0236.

    Article  CAS  PubMed  Google Scholar 

  2. Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34. https://doi.org/10.1111/joim.12012.

    Article  PubMed  Google Scholar 

  3. Kirwan JP, Aminian A, Kashyap SR, Burguera B, Brethauer SA, Schauer PR. Bariatric surgery in obese patients with type 1 diabetes. Diabetes Care. 2016;39(6):941–8. https://doi.org/10.2337/dc15-2732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashrafian H, Harling L, Toma T, Athanasiou C, Nikiteas N, Efthimiou E, et al. Type 1 diabetes mellitus and bariatric surgery: a systematic review and meta-analysis. Obes Surg. 2015;26(8):1697–704. https://doi.org/10.1007/s11695-015-1999-6.

    Article  PubMed Central  Google Scholar 

  5. Landau Z, Kowen-Sandbank G, Jakubowicz D, Raziel A, Sakran N, Zaslavsky-Paltiel I, et al. Bariatric surgery in patients with type 1 diabetes: special considerations are warranted. Ther Adv Endocrinol Metab. 2019;10:2042018818822207. https://doi.org/10.1177/2042018818822207.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chow A, Switzer NJ, Dang J, Shi X, de Gara C, Birch DW, et al. A systematic review and meta-analysis of outcomes for type 1 diabetes after bariatric surgery. J Obes. 2016;2016:1–7. https://doi.org/10.1155/2016/6170719.

    Article  CAS  Google Scholar 

  7. Mahawar KK, De Alwis N, Carr WRJ, Jennings N, Schroeder N, Small PK. Bariatric surgery in type 1 diabetes mellitus: a systematic review. Obes Surg. 2015;26(1):196–204. https://doi.org/10.1007/s11695-015-1924-z.

    Article  Google Scholar 

  8. Hussain A. The effect of metabolic surgery on type 1 diabetes: meta-analysis. Arch Endocrinol Metab. 2018;62(2):172–8. https://doi.org/10.20945/2359-3997000000021.

    Article  PubMed  Google Scholar 

  9. Mulla CM, Middelbeek RJW, Patti M-E. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci. 2018;1411(1):53–64. https://doi.org/10.1111/nyas.13409.

    Article  PubMed  Google Scholar 

  10. Arterburn DE, Olsen MK, Smith VA, Livingston EH, Van Scoyoc L, Yancy WS, et al. Association between bariatric surgery and long-term survival. Jama. 2015;313(1):62–70. https://doi.org/10.1001/jama.2014.16968.

    Article  CAS  PubMed  Google Scholar 

  11. Cardoso L, Rodrigues D, Gomes L, Carrilho F. Short- and long-term mortality after bariatric surgery: a systematic review and meta-analysis. Diabetes Obes Metab. 2017;19(9):1223–32. https://doi.org/10.1111/dom.12922.

    Article  PubMed  Google Scholar 

  12. Carlsson LMS, Peltonen M, Ahlin S, Anveden Å, Bouchard C, Carlsson B, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish Obese Subjects. N Engl J Med. 2012;367(8):695–704. https://doi.org/10.1056/NEJMoa1112082.

    Article  CAS  PubMed  Google Scholar 

  13. Fisher DP, Johnson E, Haneuse S, Arterburn D, Coleman KJ, O’Connor PJ, et al. Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. Jama. 2018;320(15):1570–82. https://doi.org/10.1001/jama.2018.14619.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Heneghan HM, Meron-Eldar S, Brethauer SA, Schauer PR, Young JB. Effect of bariatric surgery on cardiovascular risk profile. Drs. Heneghan and Meron-Eldar contributed equally to this article. Am J Cardiol. 2011;108(10):1499–507. https://doi.org/10.1016/j.amjcard.2011.06.076.

    Article  PubMed  Google Scholar 

  15. Schauer PR, Mingrone G, Ikramuddin S, Wolfe B. Clinical outcomes of metabolic surgery: efficacy of glycemic control, weight loss, and remission of diabetes. Diabetes Care. 2016;39(6):902–11. https://doi.org/10.2337/dc16-0382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. Jama. 2012;307(1):56–65. https://doi.org/10.1001/jama.2011.1914.

    Article  PubMed  Google Scholar 

  17. Adams TD, Arterburn DE, Nathan DM, Eckel RH. Clinical outcomes of metabolic surgery: microvascular and macrovascular complications. Diabetes Care. 2016;39(6):912–23. https://doi.org/10.2337/dc16-0157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Brien R, Johnson E, Haneuse S, Coleman KJ, O'Connor PJ, Fisher DP, et al. Microvascular outcomes in patients with diabetes after bariatric surgery versus usual care. Ann Intern Med. 2018;169(5):300–10. https://doi.org/10.7326/m17-2383.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aminian A, Zajichek A, Arterburn DE, Wolski KE, Brethauer SA, Schauer PR, et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. Jama. 2019. https://doi.org/10.1001/jama.2019.14231.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Merino J, Leong A, Posner DC, Porneala B, Masana L, Dupuis J, et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care. 2017;40(5):687–93. https://doi.org/10.2337/dc16-2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee PC, Tham KW, Ganguly S, Tan HC, Eng AKH, Dixon JB. Ethnicity does not influence glycemic outcomes or diabetes remission after sleeve gastrectomy or gastric bypass in a multiethnic Asian cohort. Obes Surg. 2017;28(6):1511–8. https://doi.org/10.1007/s11695-017-3050-6.

    Article  Google Scholar 

  22. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric–metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73. https://doi.org/10.1016/s0140-6736(15)00075-6.

    Article  PubMed  Google Scholar 

  23. Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, et al. Surgical vs medical treatments for type 2 diabetes mellitus. JAMA Surgery. 2014;149(7):707–15. https://doi.org/10.1001/jamasurg.2014.467.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–53. https://doi.org/10.1007/s00125-016-3903-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ikramuddin S, Billington CJ, Lee W-J, Bantle JP, Thomas AJ, Connett JE, et al. Roux-en-Y gastric bypass for diabetes (the diabetes surgery study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 2015;3(6):413–22. https://doi.org/10.1016/s2213-8587(15)00089-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101(1):50–6. https://doi.org/10.1016/j.diabres.2013.04.005.

    Article  PubMed  Google Scholar 

  27. Parikh M, Chung M, Sheth S, McMacken M, Zahra T, Saunders JK, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann Surg. 2014;260(4):617–24. https://doi.org/10.1097/sla.0000000000000919.

    Article  PubMed  Google Scholar 

  28. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes — 5-year outcomes. N Engl J Med. 2017;376(7):641–51. https://doi.org/10.1056/NEJMoa1600869.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Simonson DC, Halperin F, Foster K, Vernon A, Goldfine AB. Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en-Y gastric bypass surgery versus intensive lifestyle management: the SLIMM-T2D study. Diabetes Care. 2018;41(4):670–9. https://doi.org/10.2337/dc17-0487.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ding S-A, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56. https://doi.org/10.1210/jc.2015-1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes. Jama. 2008;299(3). https://doi.org/10.1001/jama.299.3.316.

  32. Wentworth JM, Playfair J, Laurie C, Ritchie ME, Brown WA, Burton P, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(7):545–52. https://doi.org/10.1016/s2213-8587(14)70066-x.

    Article  PubMed  Google Scholar 

  33. Reaven PD, Emanuele NV, Wiitala WL, Bahn GD, Reda DJ, McCarren M, et al. Intensive glucose control in patients with type 2 diabetes — 15-year follow-up. N Engl J Med. 2019;380(23):2215–24. https://doi.org/10.1056/NEJMoa1806802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39. https://doi.org/10.1056/NEJMoa0808431.

    Article  CAS  PubMed  Google Scholar 

  35. Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72. https://doi.org/10.1056/NEJMoa0802987.

    Article  Google Scholar 

  36. Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59. https://doi.org/10.1056/NEJMoa0802743.

    Article  Google Scholar 

  37. Eliasson B, Liakopoulos V, Franzén S, Näslund I, Svensson A-M, Ottosson J, et al. Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. The Lancet Diabetes & Endocrinology. 2015;3(11):847–54. https://doi.org/10.1016/s2213-8587(15)00334-4.

    Article  Google Scholar 

  38. Ortega CB, Lee H-J, Portenier D, Guerron AD, Tong J. Preoperative hemoglobin A1c predicts postoperative weight loss following bariatric surgery in patients with diabetes. 2018;67(Supplement 1):2045–P. https://doi.org/10.2337/db18-2045-P%JDiabetes.

  39. Syed S, Finks J, Wood M, Carlin A, Wohaibi E, Kole K, et al. Effect of preoperative hemoglobin A1c on bariatric surgery outcomes. Surg Obes Relat Dis. 2015;11(6):S43–S4. https://doi.org/10.1016/j.soard.2015.08.479.

    Article  Google Scholar 

  40. Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol. 2002;40(3):418–23. https://doi.org/10.1016/s0735-1097(02)01969-1.

    Article  PubMed  Google Scholar 

  41. Underwood P, Askari R, Hurwitz S, Chamarthi B, Garg R. Response to comment on underwood et al. preoperative a1c and clinical outcomes in patients with diabetes undergoing major noncardiac surgical procedures. Diabetes Care. 2014;37:611–6. Diabetes Care. 2014;37(8):e191-e. https://doi.org/10.2337/dc14-0738.

    Article  CAS  PubMed  Google Scholar 

  42. •• Yong PH, Weinberg L, Torkamani N, Churilov L, Robbins RJ, Ma R, et al. The presence of diabetes and higher Hba1care independently associated with adverse outcomes after surgery. Diabetes Care. 2018;41(6):1172–9. https://doi.org/10.2337/dc17-2304 This prospective observational study of over 7500 patients undergoing bariatric surgery found an increased risk of major complications, ICU admission, and longer length of hospital stay with each point rise in hemoglobin A1c. This suggests that pre-operative and post-operative glucose management may lead to less post-operative complications.

    Article  PubMed  Google Scholar 

  43. van den Boom W, Schroeder RA, Manning MW, Setji TL, Fiestan G-O, Dunson DB. Effect of A1C and glucose on postoperative mortality in noncardiac and cardiac surgeries. Diabetes Care. 2018;41(4):782–8. https://doi.org/10.2337/dc17-2232.

    Article  PubMed  Google Scholar 

  44. Mechanick J, Youdim A, Jones D, Garvey W, Hurley D, McMahon M, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract. 2013;19(2):337–72. https://doi.org/10.4158/ep12437.Gl.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Laguna Sanz AJ, Mulla CM, Fowler KM, Cloutier E, Goldfine AB, Newswanger B, et al. Design and clinical evaluation of a novel low-glucose prediction algorithm with mini-dose stable glucagon delivery in post-bariatric hypoglycemia. Diabetes Technol Ther. 2018;20(2):127–39. https://doi.org/10.1089/dia.2017.0298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nielsen JB, Abild CB, Pedersen AM, Pedersen SB, Richelsen B. Continuous glucose monitoring after gastric bypass to evaluate the glucose variability after a low-carbohydrate diet and to determine hypoglycemia. Obes Surg. 2016;26(9):2111–8. https://doi.org/10.1007/s11695-016-2058-7.

    Article  PubMed  Google Scholar 

  47. Alvarez R, Bonham AJ, Buda CM, Carlin AM, Ghaferi AA, Varban OA. Factors associated with long wait times for bariatric surgery. Ann Surg. 2018:1. https://doi.org/10.1097/sla.0000000000002826.

    Article  PubMed  Google Scholar 

  48. Hutcheon DA, Hale AL, Ewing JA, Miller M, Couto F, Bour ES, et al. Short-term preoperative weight loss and postoperative outcomes in bariatric surgery. J Am Coll Surg. 2018;226(4):514–24. https://doi.org/10.1016/j.jamcollsurg.2017.12.032.

    Article  PubMed  Google Scholar 

  49. Ross LJ, Wallin S, Osland EJ, Memon MA. Commercial very low energy meal replacements for preoperative weight loss in obese patients: a systematic review. Obes Surg. 2016;26(6):1343–51. https://doi.org/10.1007/s11695-016-2167-3.

    Article  PubMed  Google Scholar 

  50. Isom KA, Andromalos L, Ariagno M, Hartman K, Mogensen KM, Stephanides K, et al. Nutrition and metabolic support recommendations for the bariatric patient. Nutr Clin Pract. 2014;29(6):718–39. https://doi.org/10.1177/0884533614552850.

    Article  PubMed  Google Scholar 

  51. Sherf Dagan S, Goldenshluger A, Globus I, Schweiger C, Kessler Y, Kowen Sandbank G, et al. Nutritional recommendations for adult bariatric surgery patients: clinical practice. Advances in Nutrition: An International Review Journal. 2017;8(2):382–94. https://doi.org/10.3945/an.116.014258.

    Article  CAS  Google Scholar 

  52. Brethauer S. ASMBS position statement on preoperative supervised weight loss requirements. Surg Obes Relat Dis. 2011;7(3):257–60. https://doi.org/10.1016/j.soard.2011.03.003.

    Article  PubMed  Google Scholar 

  53. Fris RJ. Preoperative low energy diet diminishes liver size. Obes Surg. 2004;14(9):1165–70. https://doi.org/10.1381/0960892042386977.

    Article  PubMed  Google Scholar 

  54. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–9. https://doi.org/10.1016/s0140-6736(18)32590-x.

    Article  CAS  PubMed  Google Scholar 

  55. Shyangdan DS, Royle P, Clar C, Sharma P, Waugh N, Snaith A. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;10:CD006423. https://doi.org/10.1002/14651858.CD006423.pub2.

    Article  Google Scholar 

  56. Sherifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The effect of oral antidiabetic agents on A1C levels: a systematic review and meta-analysis. Diabetes Care. 2010;33(8):1859–64. https://doi.org/10.2337/dc09-1727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes. Ann Intern Med. 2013;159(4):262–74. https://doi.org/10.7326/0003-4819-159-4-201308200-00007.

    Article  PubMed  Google Scholar 

  58. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2019. Diabetes Care. 2019;42(Supplement 1):S90–S102. https://doi.org/10.2337/dc19-S009.

  59. Demma LJ, Carlson KT, Duggan EW, Morrow JG, Umpierrez G. Effect of basal insulin dosage on blood glucose concentration in ambulatory surgery patients with type 2 diabetes. J Clin Anesth. 2017;36:184–8. https://doi.org/10.1016/j.jclinane.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  60. Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–83. https://doi.org/10.1056/NEJMra040832.

    Article  CAS  PubMed  Google Scholar 

  61. Elizarova S, Galstyan GR, Wolffenbuttel BH. Role of premixed insulin analogues in the treatment of patients with type 2 diabetes mellitus: a narrative review. J Diabetes. 2014;6(2):100–10. https://doi.org/10.1111/1753-0407.12096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Riddle MC, Rosenstock J, Gerich J. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26(11):3080–6. https://doi.org/10.2337/diacare.26.11.3080.

    Article  CAS  PubMed  Google Scholar 

  63. Rottenstreich A, Keidar A, Yuval JB, Abu-Gazala M, Khalaileh A, Elazary R. Outcome of bariatric surgery in patients with type 1 diabetes mellitus: our experience and review of the literature. Surg Endosc. 2016;30(12):5428–33. https://doi.org/10.1007/s00464-016-4901-2.

    Article  PubMed  Google Scholar 

  64. Aminian A, Kashyap SR, Burguera B, Punchai S, Sharma G, Froylich D, et al. Incidence and clinical features of diabetic ketoacidosis after bariatric and metabolic surgery. Diabetes Care. 2016;39(4):e50–3. https://doi.org/10.2337/dc15-2647.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Andalib A, Elbahrawy A, Alshlwi S, Alkhamis A, Hu W, Demyttenaere S, et al. Diabetic ketoacidosis following bariatric surgery in patients with type 2 diabetes: table 1. Diabetes Care. 2016;39(8):e121–e2. https://doi.org/10.2337/dc16-0280.

    Article  CAS  PubMed  Google Scholar 

  66. Rizo IM, Apovian CM. Diabetic ketoacidosis post bariatric surgery. Front Endocrinol (Lausanne). 2018;9:812. https://doi.org/10.3389/fendo.2018.00812.

    Article  Google Scholar 

  67. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  PubMed  Google Scholar 

  68. Bahne E, Sun EWL, Young RL, Hansen M, Sonne DP, Hansen JS, et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight. 2018;3(23). https://doi.org/10.1172/jci.insight.93936.

  69. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8. https://doi.org/10.1038/nm.4345.

    Article  CAS  PubMed  Google Scholar 

  70. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6(3):253–65. https://doi.org/10.1007/s13679-017-0276-5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Malin SK, Kashyap SR. Effects of metformin on weight loss. Current Opinion in Endocrinology & Diabetes and Obesity. 2014;21(5):323–9. https://doi.org/10.1097/med.0000000000000095.

    Article  CAS  Google Scholar 

  73. Moioli A, Maresca B, Manzione A, Napoletano AM, Coclite D, Pirozzi N, et al. Metformin associated lactic acidosis (MALA): clinical profiling and management. Journal of Nephrology. 2016;29(6):783–9. https://doi.org/10.1007/s40620-016-0267-8.

    Article  CAS  PubMed  Google Scholar 

  74. Aberle J, Reining F, Dannheim V, Flitsch J, Klinge A, Mann O. Metformin after bariatric surgery – an acid problem. Exp Clin Endocrinol Diabetes. 2011;120(03):152–3. https://doi.org/10.1055/s-0031-1285911.

    Article  CAS  PubMed  Google Scholar 

  75. Deden LN, Aarts EO, Aelfers SCW, van Borren MMGJ, Janssen IMC, Berends FJ, et al. Risk of metformin-associated lactic acidosis (MALA) in patients after gastric bypass surgery. Obes Surg. 2017;28(4):1080–5. https://doi.org/10.1007/s11695-017-2974-1.

    Article  Google Scholar 

  76. Sudhakaran S, Surani SR. Guidelines for perioperative management of the diabetic patient. Surgery Research and Practice. 2015;2015:1–8. https://doi.org/10.1155/2015/284063.

    Article  Google Scholar 

  77. Duggan EW, Klopman MA, Berry AJ, Umpierrez G. The Emory University perioperative algorithm for the management of hyperglycemia and diabetes in non-cardiac surgery patients. Current Diabetes Reports. 2016;16(3):34. https://doi.org/10.1007/s11892-016-0720-z.

    Article  CAS  PubMed  Google Scholar 

  78. Padwal RS, Gabr RQ, Sharma AM, Langkaas LA, Birch DW, Karmali S, et al. Effect of gastric bypass surgery on the absorption and bioavailability of metformin. Diabetes Care. 2011;34(6):1295–300. https://doi.org/10.2337/dc10-2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Razavi N, Siavash M, Tabbakhian M, Sabzghabaee A. Severity of gastrointestinal side effects of metformin tablet compared to metformin capsule in type 2 diabetes mellitus patients. J Res Pharm Pract. 2017;6(2):73–6. https://doi.org/10.4103/jrpp.JRPP_17_2.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectrum. 2017;30(3):202–10. https://doi.org/10.2337/ds16-0026.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab. 2005;1(1):22–31. https://doi.org/10.1038/ncpendmet0017.

    Article  CAS  PubMed  Google Scholar 

  82. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  83. Jirapinyo P, Jin DX, Qazi T, Mishra N, Thompson CC. A meta-analysis of GLP-1 after Roux-En-Y gastric bypass: impact of surgical technique and measurement strategy. Obes Surg. 2017;28(3):615–26. https://doi.org/10.1007/s11695-017-2913-1.

    Article  Google Scholar 

  84. • Kaneko S, Ueda Y, Tahara Y. GLP1 receptor agonist liraglutide is an effective therapeutic option for perioperative glycemic control in type 2 diabetes within enhanced recovery after surgery (ERAS) protocols. Eur Surg Res. 2018;59(5–6):349–60. https://doi.org/10.1159/000494768 This study demonstrated the safety and efficacy of a GLP-1 agonist in the perioperative setting and supports utilization of this class of medications due to their weight loss and cardiovascular and renoprotactive benefits.

    Article  CAS  PubMed  Google Scholar 

  85. Egan AG, Blind E, Dunder K, de Graeff PA, Hummer BT, Bourcier T, et al. Pancreatic safety of incretin-based drugs — FDA and EMA assessment. N Engl J Med. 2014;370(9):794–7. https://doi.org/10.1056/NEJMp1314078.

    Article  CAS  PubMed  Google Scholar 

  86. ClinicalTrials.gov. Evaluation of liraglutide 3.0 mg in patients with poor weight-loss and a suboptimal glucagon-like peptide-1 response (BARIOPTIMISE). Available at: https://clinicaltrials.gov/ct2/show/NCT03341429. Accessed on: 6 September 2019.

  87. ClinicalTrials.gov. Effect of GLP-1 receptor agonism after sleeve gastrectomy. Available at: https://clinicaltrials.gov/ct2/show/NCT03115424. Accessed on: 6 September 2019.

  88. Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab. 2009;23(4):479–86. https://doi.org/10.1016/j.beem.2009.03.004.

    Article  CAS  PubMed  Google Scholar 

  89. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes. JAMA. 2007;298(2):194–206. https://doi.org/10.1001/jama.298.2.194.

    Article  CAS  PubMed  Google Scholar 

  90. Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch C. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;2:CD006739. https://doi.org/10.1002/14651858.CD006739.pub2.

    Article  Google Scholar 

  91. Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick DH, Newton C, et al. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study. Diabetes Care. 2013;36(11):3430–5. https://doi.org/10.2337/dc13-0277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shah A, Levesque K, Pierini E, Rojas B, Ahlers M, Stano S, et al. Effect of sitagliptin on glucose control in type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery. Diabetes Obes Metab. 2018;20(4):1018–23. https://doi.org/10.1111/dom.13139.

    Article  CAS  PubMed  Google Scholar 

  93. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of endocrinology on the comprehensive type 2 diabetes management algorithm – 2019 executive summary. Endocr Pract. 2019;25(1):69–100. https://doi.org/10.4158/cs-2018-0535.

    Article  PubMed  Google Scholar 

  94. Kheniser K, Kashyap SR. Canagliflozin versus placebo for post-bariatric surgery patients with persistent type II diabetes: a randomized controlled trial (CARAT). Diabetes Obes Metab. 2017;19(4):609–10. https://doi.org/10.1111/dom.12860.

    Article  PubMed  Google Scholar 

  95. Food and Drug Administration. FDA drug safety communication: FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. 2015. Available from: https://www.fda.gov/media/94822/download.

    Google Scholar 

  96. Food and Drug Administration. FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes. 2018. Available from: https://www.fda.gov/media/115602/download.

    Google Scholar 

  97. van Niekerk C, Wallace J, Takata M, Yu R. Euglycaemic diabetic ketoacidosis in bariatric surgery patients with type 2 diabetes taking canagliflozin. BMJ Case Reports. 2018;2018. https://doi.org/10.1136/bcr-2017-221527.

  98. Hoenes C, Rashid Q, Pimentel J. Diabetic ketoacidosis in a postoperative gastric bypass patient. Journal of Surgical Case Reports. 2017;2017(7):rjx148. https://doi.org/10.1093/jscr/rjx148.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Elasha HEA, Wafa W, Meeran K. SGLT2 inhibition may precipitate euglycemic DKA after bariatric surgery. Clinical Diabetes and Research. 2018;2(1):40–2.

    Google Scholar 

  100. Umpierrez GE. SGLT2 inhibitors and diabetic ketoacidosis — a growing concern. Nat Rev Endocrinol. 2017;13(8):441–2. https://doi.org/10.1038/nrendo.2017.77.

    Article  CAS  PubMed  Google Scholar 

  101. Levine JA, Karam SL, Aleppo G. SGLT2-I in the hospital setting: diabetic ketoacidosis and other benefits and concerns. Current Diabetes Reports. 2017;17(7):54. https://doi.org/10.1007/s11892-017-0874-3.

    Article  CAS  PubMed  Google Scholar 

  102. Meyer EJ, Gabb G, Jesudason D. SGLT2 inhibitor–associated euglycemic diabetic ketoacidosis: a South Australian clinical case series and Australian spontaneous adverse event notifications. Diabetes Care. 2018;41(4):e47–e9. https://doi.org/10.2337/dc17-1721.

    Article  CAS  PubMed  Google Scholar 

  103. Handelsman Y, Henry RR, Bloomgarden ZT, Dagogo-Jack S, DeFronzo RA, Einhorn D, et al. American Association of Clinical Endocrinologists and American College of endocrinology position statement on the association of Sglt-2 inhibitors and diabetic ketoacidosis. Endocr Pract. 2016;22(6):753–62. https://doi.org/10.4158/ep161292.Ps.

    Article  PubMed  Google Scholar 

  104. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical approach to initiating SGLT2 inhibitors in type 2 diabetes. Diabetes Therapy. 2017;8(5):953–62. https://doi.org/10.1007/s13300-017-0277-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen J, Mackenzie J, Zhai Y, O’Loughlin J, Kholer R, Morrow E, et al. Preventing returns to the emergency department following bariatric surgery. Obes Surg. 2017;27(8):1986–92. https://doi.org/10.1007/s11695-017-2624-7.

    Article  PubMed  Google Scholar 

  106. Alvarenga ES, Lo Menzo E, Szomstein S, Rosenthal RJ. Safety and efficacy of 1020 consecutive laparoscopic sleeve gastrectomies performed as a primary treatment modality for morbid obesity. A single-center experience from the metabolic and bariatric surgical accreditation quality and improvement program. Surg Endosc. 2015;30(7):2673–8. https://doi.org/10.1007/s00464-015-4548-4.

    Article  PubMed  Google Scholar 

  107. Food and Drug Administration. FDA drug safety communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR). Available from: https://www.fda.gov/media/98683/download.

  108. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306. https://doi.org/10.1056/NEJMoa1811744.

    Article  CAS  PubMed  Google Scholar 

  109. Seidu S, Kunutsor SK, Cos X, Gillani S, Khunti K. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: a systematic review and meta-analysis. Primary Care Diabetes. 2018;12(3):265–83. https://doi.org/10.1016/j.pcd.2018.02.001.

    Article  PubMed  Google Scholar 

  110. Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. The Lancet Diabetes & Endocrinology. 2015;3(1):8–10. https://doi.org/10.1016/s2213-8587(14)70227-x.

    Article  CAS  Google Scholar 

  111. Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. The Journal of Clinical Endocrinology & Metabolism. 2016;101(1):44–51. https://doi.org/10.1210/jc.2015-1860.

    Article  CAS  Google Scholar 

  112. Fralick M, Kim SC, Schneeweiss S, Kim D, Redelmeier DA, Patorno E. Fracture risk after initiation of use of canagliflozin. Ann Intern Med. 2019;170(3):155–63. https://doi.org/10.7326/m18-0567.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rosak C, Mertes. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2012;5:357–67. https://doi.org/10.2147/dmso.S28340.

    Article  CAS  Google Scholar 

  114. Catalan VS, Couture JA, LeLorier J. Predictors of persistence of use of the novel antidiabetic agent acarbose. Arch Intern Med. 2001;161(8):1106–12.

    Article  CAS  PubMed  Google Scholar 

  115. Potoczna N, Harfmann S, Steffen R, Briggs R, Bieri N, Horber FF. Bowel habits after bariatric surgery. Obes Surg. 2008;18(10):1287–96. https://doi.org/10.1007/s11695-008-9456-4.

    Article  PubMed  Google Scholar 

  116. Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, et al. State of the art paper sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;4(4):840–8. https://doi.org/10.5114/aoms.2015.53304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Bethany M. Mulla, MD, for proofreading the manuscript.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Mulla.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulla, C.M., Baloch, H.M. & Hafida, S. Management of Diabetes in Patients Undergoing Bariatric Surgery. Curr Diab Rep 19, 112 (2019). https://doi.org/10.1007/s11892-019-1242-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1242-2

Keywords

Navigation