Skip to main content
Log in

Metabolic Abnormalities in Diabetes and Kidney Disease: Role of Uremic Toxins

  • Microvascular Complications—Nephropathy (M Afkarian and B Roshanravan, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic kidney disease (CKD) is characterized by the accumulation of uremic retention solutes (URS) and is associated with perturbations of glucose homeostasis even in absence of diabetes. The underlying mechanisms of insulin resistance, β cell failure, and increase risk of diabetes in CKD, however, remain unclear. Metabolomic studies reported that some metabolites are similar in CKD and diabetic kidney disease (DKD) and contribute to the progression to end-stage renal disease. We attempted to discuss the mechanisms involved in the disruption of carbohydrate metabolism in CKD by focusing on the specific role of URS.

Recent Findings

Recent clinical data have demonstrated a defect of insulin secretion in CKD. Several studies highlighted the direct role of some URS (urea, trimethylamine N-oxide (TMAO), p-cresyl sulfate, 3-carboxylic acid 4-methyl-5-propyl-2-furan propionic (CMPF)) in glucose homeostasis abnormalities and diabetes incidence.

Summary

Gut dysbiosis has been identified as a potential contributor to diabetes and to the production of URS. The complex interplay between the gut microbiota, kidney, pancreas β cell, and peripheral insulin target tissues has brought out new hypotheses for the pathogenesis of CKD and DKD. The characterization of intestinal microbiota and its associated metabolites are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials, and new treatments for CKD and DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  2. Menon V, Greene T, Pereira AA, Wang X, Beck GJ, Kusek JW, et al. Glycosylated hemoglobin and mortality in patients with nondiabetic chronic kidney disease. J Am Soc Nephrol. 2005;16:3411–7.

    Article  CAS  PubMed  Google Scholar 

  3. Koppe L, Pelletier CC, Alix PM, Kalbacher E, Fouque D, Soulage CO, et al. Insulin resistance in chronic kidney disease: new lessons from experimental models. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2014;29:1666–74.

    CAS  Google Scholar 

  4. • Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24:1901–12. This study present a large urine metabolomics study in diabetic kidney disease and identify potential biomarkers of diabetic complications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eloot S, Schepers E, Barreto DV, Barreto FC, Liabeuf S, Van Biesen W, et al. Estimated glomerular filtration rate is a poor predictor of concentration for a broad range of uremic toxins. Clin J Am Soc Nephrol. 2011;6:1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  PubMed  Google Scholar 

  8. Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. Vidal-Puig AJ, editor. PLoS Biol. 2011;9:e1001212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3:207–15.

    Article  CAS  PubMed  Google Scholar 

  10. de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57:1569–77.

    Article  CAS  PubMed  Google Scholar 

  11. Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int. 2015;88:958–66.

    Article  CAS  PubMed  Google Scholar 

  12. DeFronzo RA, Tobin JD, Rowe JW, Andres R. Glucose intolerance in uremia. Quantification of pancreatic beta cell sensitivity to glucose and tissue sensitivity to insulin. J Clin Invest. 1978;62:425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DeFronzo RA, Alvestrand A, Smith D, Hendler R, Hendler E, Wahren J. Insulin resistance in uremia. J Clin Invest. 1981;67:563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedman JE, Dohm GL, Elton CW, Rovira A, Chen JJ, Leggett-Frazier N, et al. Muscle insulin resistance in uremic humans: glucose transport, glucose transporters, and insulin receptors. Am J Phys. 1991;26:E87–94.

    Google Scholar 

  15. Chapagain A, Caton PW, Kieswich J, Andrikopoulos P, Nayuni N, Long JH, et al. Elevated hepatic 11β-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia. Proc Natl Acad Sci U S A. 2014;111:3817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fadda GZ, Hajjar SM, Perna AF, Zhou XJ, Lipson LG, Massry SG. On the mechanism of impaired insulin secretion in chronic renal failure. J Clin Invest. 1991;87:255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. •• Koppe L, Nyam E, Vivot K, Manning Fox JE, Dai X-Q, Nguyen BN, et al. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease. J Clin Invest. 2016;126:3598–612. This study demonstrates the role of kidney disease and particular of urea in perturbation of insulin secretion associated with renal failure in mice and human islets.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sui Y, Zhao H-L, Ma RCW, Ho CS, Kong APS, Lai FMM, et al. Pancreatic islet beta-cell deficit and glucose intolerance in rats with uninephrectomy. Cell Mol Life Sci CMLS. 2007;64:3119–28.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura Y, Yoshida T, Kajiyama S, Kitagawa Y, Kanatsuna T, Kondo M. Insulin release from column-perifused isolated islets of uremic rats. Nephron. 1985;40:467–9.

    Article  CAS  PubMed  Google Scholar 

  20. •• de Boer IH, Zelnick L, Afkarian M, Ayers E, Curtin L, Himmelfarb J, et al. Impaired glucose and insulin homeostasis in moderate-severe CKD. J Am Soc Nephrol. 2016;27:2861–71. This study shows a combination of insulin resistance and inadequate augmentation of insulin secretion led to an impaired of glucose tolerance in nondiabetic patients with CKD.

    PubMed  PubMed Central  Google Scholar 

  21. Idorn T, Knop FK, Jørgensen M, Holst JJ, Hornum M, Feldt-Rasmussen B. Gastrointestinal factors contribute to glucometabolic disturbances in nondiabetic patients with end-stage renal disease. Kidney Int. 2013;83:915–23.

    Article  CAS  PubMed  Google Scholar 

  22. Alvestrand A, Mujagic M, Wajngot A, Efendic S. Glucose intolerance in uremic patients: the relative contributions of impaired beta-cell function and insulin resistance. Clin Nephrol. 1989;3:175–83.

    Google Scholar 

  23. Kanauchi M, Akai Y, Hashimoto T. Validation of simple indices to assess insulin sensitivity and pancreatic Beta-cell function in patients with renal dysfunction. Nephron. 2002;92:713–5.

    Article  CAS  PubMed  Google Scholar 

  24. Meier JJ, Nauck MA, Kranz D, Holst JJ, Deacon CF, Gaeckler D, et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes. 2004;53:654–62.

    Article  CAS  PubMed  Google Scholar 

  25. Sechi LA, Catena C, Zingaro L, Melis A, Marchi SD. Abnormalities of glucose metabolism in patients with early renal failure. Diabetes. 2002;51:1226–32.

    Article  CAS  PubMed  Google Scholar 

  26. • Jia T, Risérus U, Xu H, Lindholm B, Arnlöv J, Sjögren P, et al. Kidney function, β-cell function and glucose tolerance in older men. J Clin Endocrinol Metab. 2014;100:587–93. This study shows in a large cohort of patients with CKD by euglycaemic hyperinsulinaemic clamp that β-cell function appropriately compensated the loss in insulin sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Pham H, Robinson-Cohen C, Biggs ML, Ix JH, Mukamal KJ, Fried LF, et al. Chronic kidney disease, insulin resistance, and incident diabetes in older adults. Clin J Am Soc Nephrol. 2012;7:588–94. This study observes that renal failure was associated with insulin resistance and β cell function was appropriately augmented and incident diabetes were not increased.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allegra V, Mengozzi G, Martimbianco L, Vasile A. Glucose-induced insulin secretion in uremia: effects of aminophylline infusion and glucose loads. Kidney Int. 1990;38:1146–50.

    Article  CAS  PubMed  Google Scholar 

  29. Mak RH. Effect of metabolic acidosis on insulin action and secretion in uremia. Kidney Int. 1998;54:603–7.

    Article  CAS  PubMed  Google Scholar 

  30. Hampers CL, Soeldner JS, Doak PB, Merrill JP. Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest. 1966;45:1719–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mak RH. 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998;53:1353–7.

    Article  CAS  PubMed  Google Scholar 

  32. Mak RH, Bettinelli A, Turner C, Haycock GB, Chantler C. The influence of hyperparathyroidism on glucose metabolism in uremia. J Clin Endocrinol Metab. 1985;60:229–33.

    Article  CAS  PubMed  Google Scholar 

  33. Nerpin E, Risérus U, Ingelsson E, Sundström J, Jobs M, et al. Insulin sensitivity measured with euglycemic clamp is independently associated with glomerular filtration rate in a community-based cohort. Diabetes Care. 2008;31:1550–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Flier JS, Minaker KL, Landsberg L, Young JB, Pallotta J, Rowe JW. Impaired in vivo insulin clearance in patients with severe target-cell resistance to insulin. Diabetes. 1982;31:132–5.

    Article  CAS  PubMed  Google Scholar 

  35. Fliser D, Pacini G, Engelleiter R, Kautzky-Willer A, Prager R, Franek E, et al. Insulin resistance and hyperinsulinemia are already present in patients with incipient renal disease. Kidney Int. 1998;53:1343–7.

    Article  CAS  PubMed  Google Scholar 

  36. Trirogoff ML, Shintani A, Himmelfarb J, Ikizler TA. Body mass index and fat mass are the primary correlates of insulin resistance in nondiabetic stage 3-4 chronic kidney disease patients. Am J Clin Nutr. 2007;86:1642–8.

    Article  CAS  PubMed  Google Scholar 

  37. Gnudi L, Coward RJM, Long DA. Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab. 2016;27:820–30.

    Article  CAS  PubMed  Google Scholar 

  38. Artunc F, Schleicher E, Weigert C, Fritsche A, Stefan N, Häring H-U. The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol. 2016;12:721–37.

    Article  CAS  PubMed  Google Scholar 

  39. Lorenzo C, Nath SD, Hanley AJG, Abboud HE, Gelfond JAL, Haffner SM. Risk of type 2 diabetes among individuals with high and low glomerular filtration rates. Diabetologia. 2009;52:1290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sahakyan K, Lee KE, Shankar A, Klein R. Serum cystatin C and the incidence of type 2 diabetes mellitus. Diabetologia. 2011;54:1335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. •• Xie Y, Bowe B, Li T, Xian H, Yan Y, Al-Aly Z. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 2018;93:741–52. This study shows in more than 1 million on USA veterans that higher levels of urea and lower glomerular filtration rate are associated with increased risk of incident diabetes.

    Article  CAS  PubMed  Google Scholar 

  42. Werder AA, Amos MA, Nielsen AH, Wolfe GH. Comparative effects of germfree and ambient environments on the development of cystic kidney disease in CFWwd mice. J Lab Clin Med. 1984;103:399–407.

    CAS  PubMed  Google Scholar 

  43. Aronov PA, Luo FJ-G, Plummer NS, Quan Z, Holmes S, Hostetter TH, et al. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011;22:1769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. • Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92:634–45. Using germ-free mice models, this study has determined the role of intestinal microbiota on uremic toxins production.

    Article  CAS  PubMed  Google Scholar 

  45. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  CAS  PubMed  Google Scholar 

  46. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caesar R, Reigstad CS, Bäckhed HK, Reinhardt C, Ketonen M, Lundén GÖ, et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut. 2012;61:1701–7.

    Article  CAS  PubMed  Google Scholar 

  48. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins. 2018;8:10.

    Google Scholar 

  49. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim RB, Morse BL, Djurdjev O, Tang M, Muirhead N, Barrett B, et al. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int. 2016;89:1144–52.

    Article  CAS  PubMed  Google Scholar 

  51. Xu K-Y, Xia G-H, Lu J-Q, Chen M-X, Zhen X, Wang S, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep. 2017;7:1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kikuchi M, Ueno M, Itoh Y, Suda W, Hattori M. Uremic toxin-producing gut microbiota in rats with chronic kidney disease. Nephron. 2017;135:51–60.

    Article  CAS  PubMed  Google Scholar 

  53. • van der Kloet FM, Tempels FWA, Ismail N, van der Heijden R, Kasper PT, Rojas-Cherto M, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012;8:109–19. This study shows that changes in some uremic toxins in urine measured by metabolomics analyze are predictive of significant rise in albumin excretion rate in type 1 diabetes patients.

    Article  CAS  PubMed  Google Scholar 

  54. • Niewczas MA, Sirich TL, Mathew AV, Skupien J, Mohney RP, Warram JH, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int. 2014;85:1214–24. This study is a large metabolomic study that has described abnormal plasma concentrations of uremic solutes either contribute to progression to end stage renal disease in type 2 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong J, Piceno YM, Desantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39:230–7.

    Article  CAS  PubMed  Google Scholar 

  56. Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol. 2013;37:1–6.

    Article  CAS  PubMed  Google Scholar 

  57. Wang F, Zhang P, Jiang H, Cheng S. Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci. 2012;57:2856–62.

    Article  CAS  PubMed  Google Scholar 

  58. Wang F, Jiang H, Shi K, Ren Y, Zhang P, Cheng S. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrol Carlton Vic. 2012;17:733–8.

    Article  CAS  Google Scholar 

  59. Vaziri ND, Dure-Smith B, Miller R, Mirahmadi MK. Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol. 1985;80:608–11.

    CAS  PubMed  Google Scholar 

  60. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25:1897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao T, Zhang H, Zhao T, Zhang X, Lu J, Yin T, et al. Intrarenal metabolomics reveals the association of local organic toxins with the progression of diabetic kidney disease. J Pharm Biomed Anal. 2012;60:32–43.

    Article  CAS  PubMed  Google Scholar 

  62. Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJF, de Almeida DC, et al. Gut Bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol. 2015;26:1877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol. 2015;10:2039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koppe L, Fouque D. Microbiota and prebiotics modulation of uremic toxin generation. Panminerva Med. 2017;59:173–87.

    PubMed  Google Scholar 

  65. McCaleb ML, Izzo MS, Lockwood DH. Characterization and partial purification of a factor from uremic human serum that induces insulin resistance. J Clin Invest. 1985;75:391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raubenheimer PJ, Nyirenda MJ, Walker BR. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes. 2006;55:2015–20.

    Article  CAS  PubMed  Google Scholar 

  67. Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, et al. The TMAO-producing enzyme Flavin-containing monooxygenase 3 regulates obesity and the Beiging of white adipose tissue. Cell Rep. 2017;19:2451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koppe L, Pillon NJ, Vella RE, Croze ML, Pelletier CC, Chambert S, et al. p-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol. 2013;24:88–99.

    Article  CAS  PubMed  Google Scholar 

  69. Koppe L, Alix PM, Croze ML, Chambert S, Vanholder R, Glorieux G, et al. P-Cresyl glucuronide is a major metabolite of p-cresol in mouse: in contrast to p-cresyl sulphate, p-cresyl glucuronide fails to promote insulin resistance. Nephrol Dial Transplant. 2017;32:2000–9.

    Article  PubMed  Google Scholar 

  70. Minakuchi H, Wakino S, Hosoya K, Sueyasu K, Hasegawa K, Shinozuka K, et al. The role of adipose tissue asymmetric dimethylarginine/dimethylarginine dimethylaminohydrolase pathway in adipose tissue phenotype and metabolic abnormalities in subtotally nephrectomized rats. Nephrol Dial Transplant. 2016;31:413–23.

    Article  CAS  PubMed  Google Scholar 

  71. Pelantová H, Bugáňová M, Holubová M, Šedivá B, Zemenová J, Sýkora D, et al. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol Cell Endocrinol. 2016;431:88–100.

    Article  CAS  PubMed  Google Scholar 

  72. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8.

    Article  CAS  PubMed  Google Scholar 

  73. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  74. Gomes JMG, Costa JA, Alfenas RCG. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism. 2017;68:133–44.

    Article  CAS  PubMed  Google Scholar 

  75. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, Reyes-Gavilán DL, et al. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhao L, Zhang F, Ding X, Wu G, Lam YY, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151–6.

    Article  CAS  PubMed  Google Scholar 

  77. • D’Apolito M, Du X, Zong H, Catucci A, Maiuri L, Trivisano T, et al. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J Clin Invest. 2010;120:203–13. This study demonstrates the role of urea in insulin resistance in rodent and cell models.

    Article  PubMed  Google Scholar 

  78. • Prentice KJ, Luu L, Allister EM, Liu Y, Jun LS, Sloop KW, et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction. Cell Metab. 2014;19:653–66. This study shows that CMPF a metabolite increase in diabete and renal desease is involved in β-Ccell dysfunction.

    Article  CAS  PubMed  Google Scholar 

  79. Gruppen EG, Garcia E, Connelly MA, Jeyarajah EJ, Otvos JD, Bakker SJL, et al. TMAO is associated with mortality: impact of modestly impaired renal function. Sci Rep. 2017;7:13781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heianza Y, Sun D, Li X, DiDonato JA, Bray GA, Sacks FM, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS lost trial. Gut. 2018; https://doi.org/10.1136/gutjnl-2018-316155.

  81. Poesen R, Evenepoel P, de Loor H, Delcour JA, Courtin CM, Kuypers D, et al. The influence of prebiotic Arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: a randomized controlled trial. PLoS One. 2016;11:e0153893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chiu C-A, Lu L-F, Yu T-H, Hung W-C, Chung F-M, Tsai I-T, et al. Increased levels of total P-Cresylsulphate and indoxyl sulphate are associated with coronary artery disease in patients with diabetic nephropathy. Rev Diabet Stud. 2010;7:275–84.

    Article  PubMed  Google Scholar 

  83. Roh E, Kwak SH, Jung HS, Cho YM, Pak YK, Park KS, et al. Serum aryl hydrocarbon receptor ligand activity is associated with insulin resistance and resulting type 2 diabetes. Acta Diabetol. 2015;52:489–95.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang A, Sun H, Yan G, Yuan Y, Han Y, Wang X. Metabolomics study of type 2 diabetes using ultra-performance LC-ESI/quadrupole-TOF high-definition MS coupled with pattern recognition methods. J Physiol Biochem. 2014;70:117–28.

    Article  CAS  PubMed  Google Scholar 

  85. Atoh K, Itoh H, Haneda M. Serum indoxyl sulfate levels in patients with diabetic nephropathy: relation to renal function. Diabetes Res Clin Pract. 2009;83:220–6.

    Article  CAS  PubMed  Google Scholar 

  86. Creely SJ, McTernan PG, Kusminski CM, Fisher fM, Da Silva NF, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740–7.

    Article  CAS  PubMed  Google Scholar 

  87. Koppe L, Poitout V. CMPF: a biomarker for type 2 diabetes mellitus progression? Trends Endocrinol Metab. 2016;27:439–40.

    Article  CAS  PubMed  Google Scholar 

  88. Lankinen MA, Hanhineva K, Kolehmainen M, Lehtonen M, Auriola S, Mykkänen H, et al. CMPF does not associate with impaired glucose metabolism in individuals with features of metabolic syndrome. PLoS One. 2015;10:e0124379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luce M, Bouchara A, Pastural M, Granjon S, Szelag JC, Laville M, et al. Is 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) a clinically relevant uremic toxin in haemodialysis patients? Toxins. 2018;10. https://doi.org/10.3390/toxins10050205.

    Article  PubMed Central  Google Scholar 

  90. Retnakaran R, Ye C, Kramer CK, Connelly PW, Hanley AJ, Sermer M, et al. Evaluation of circulating determinants of Beta-cell function in women with and without gestational diabetes. J Clin Endocrinol Metab. 2016;101:2683–91.

    Article  CAS  PubMed  Google Scholar 

  91. Liu Y, Prentice KJ, Eversley JA, Hu C, Batchuluun B, Leavey K, et al. Rapid elevation in CMPF may act as a tipping point in diabetes development. Cell Rep. 2016;14:2889–900.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Koppe.

Ethics declarations

Conflict of Interest

L. Koppe and C.O. Soulage declare that they have no conflict of interest.

D. Fouque received honoraria and travel support from Fresenius Kabi, which markets a ketoanalogue supplement.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koppe, L., Fouque, D. & Soulage, C.O. Metabolic Abnormalities in Diabetes and Kidney Disease: Role of Uremic Toxins. Curr Diab Rep 18, 97 (2018). https://doi.org/10.1007/s11892-018-1064-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1064-7

Keywords

Navigation