Skip to main content

Advertisement

Log in

Dietary Advanced Glycation End Products and Cardiometabolic Risk

  • Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (B Conway and H Keenan, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This report analyzes emerging evidence about the role of dietary advanced glycation end products (AGEs) as a cardiometabolic risk factor. Two important aspects are discussed: First, the modulation of AGE load by dietary AGEs; second, if the evidence of clinical and observational studies is enough to make dietary recommendations towards lowering AGE intake.

Recent Findings

Clinical studies in subjects with diabetes mellitus have shown that high intake of dietary AGEs increases inflammation markers, oxidative stress, and could impair endothelial function. In subjects at risk for cardiometabolic diseases (with overweight, obesity, or prediabetes), dietary AGE restriction decreases some inflammatory molecules and improves insulin sensitivity. However, studies in healthy subjects are limited, and not all of the studies have shown a decrease in circulating AGEs. Therefore, it is still unclear if dietary AGEs represent a health concern for people potentially at risk for cardiometabolic diseases.

Summary

The evidence shows that dietary AGEs are bioavailable and absorbed, and the rate of excretion depends on dietary intake. The metabolic fate of most dietary AGEs remains unknown. Regardless, most studies have shown that by diminishing AGE intake, circulating levels will also decrease. Thus, dietary AGEs can modulate the AGE load at least in patients with DM, overweight, or obesity. Studies with specific clinical outcomes and large-scale observational studies are needed for a better risk assessment of dietary AGEs and to establish dietary recommendations accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Organization WH. Cardiovascular diseases, fact sheet. 2016. http://www.who.int/nmh/publications/fact_sheet_cardiovascular_en.pdf. Accessed February 2017.

  2. • Yamagishi SI, Nakamura N, Matsui T. Glycation and cardiovascular disease in diabetes: a perspective on the concept of metabolic memory. J Diabetes. 2017;9(2):141–8. doi:10.1111/1753-0407.12475. A review of the mechanism of AGEs in cardiovascular disease and diabetes.

    Article  CAS  PubMed  Google Scholar 

  3. Giorgino F, Leonardini A, Laviola L. Cardiovascular disease and glycemic control in type 2 diabetes: now that the dust is settling from large clinical trials. Ann N Y Acad Sci. 2013; doi:10.1111/nyas.12044.

  4. D’Agostino RB Sr, Pencina MJ, Massaro JM, Coady S. Cardiovascular disease risk assessment: insights from Framingham. Glob Heart. 2013;8(1):11–23. doi:10.1016/j.gheart.2013.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28(6):1039–49. doi:10.1161/ATVBAHA.107.159228.

    Article  CAS  PubMed  Google Scholar 

  6. O'Donnell CJ, Elosua R. Cardiovascular risk factors. Insights from Framingham Heart Study. Rev Esp Cardiol. 2008;61(3):299–310.

    Article  PubMed  Google Scholar 

  7. Conthe P, Lobos JM. Definition and current situation of cardiometabolic risk. Rev Clin Esp. 2008;208(2):63–5.

    Article  CAS  PubMed  Google Scholar 

  8. Lee IM, Matthews CE, Blair SN. The legacy of Dr. Ralph seal Paffenbarger, Jr.—past, present, and future contributions to physical activity research. Pres Counc Phys Fit Sports Res Dig. 2009;10(1):1–8.

    PubMed  PubMed Central  Google Scholar 

  9. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–16.e12. doi:10.1016/j.jada.2010.03.018.

  10. Tikellis C, Thomas MC, Harcourt BE, Coughlan MT, Pete J, Bialkowski K, et al. Cardiac inflammation associated with a western diet is mediated via activation of RAGE by AGEs. Am J Physiol Endocrinol Metab. 2008;295(2):E323–30. doi:10.1152/ajpendo.00024.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep. 2014;14(1):453. doi:10.1007/s11892-013-0453-1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, et al. Dietary advanced glycation end products and their role in health and disease. Adv Nutr (Bethesda, Md). 2015;6(4):461–73. doi:10.3945/an.115.008433.

    Article  Google Scholar 

  13. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. doi:10.1161/CIRCRESAHA.110.223545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corrales Escobosa AR, Wrobel K, Yanez Barrientos E, Jaramillo Ortiz S, Ramirez Segovia AS, Wrobel K. Effect of different glycation agents on cu(II) binding to human serum albumin, studied by liquid chromatography, nitrogen microwave-plasma atomic-emission spectrometry, inductively-coupled-plasma mass spectrometry, and high-resolution molecular-mass spectrometry. Anal Bioanal Chem. 2015;407(4):1149–57. doi:10.1007/s00216-014-8335-1.

    Article  CAS  PubMed  Google Scholar 

  15. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29. doi:10.1016/j.redox.2013.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038. doi:10.1155/2007/61038.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013;47(Suppl 1):3–27. doi:10.3109/10715762.2013.815348.

    Article  CAS  PubMed  Google Scholar 

  18. Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bugel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2013;60:10–37. doi:10.1016/j.fct.2013.06.052.

    Article  CAS  Google Scholar 

  19. Ghanem AA, Elewa A, Arafa LF. Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur J Ophthalmol. 2011;21(1):48–54.

    Article  PubMed  Google Scholar 

  20. Ni J, Yuan X, Gu J, Yue X, Gu X, Nagaraj RH, et al. Plasma protein pentosidine and carboxymethyllysine, biomarkers for age-related macular degeneration. Mol Cell Proteomics. 2009;8(8):1921–33. doi:10.1074/mcp.M900127-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luevano-Contreras C, Garay-Sevilla ME, Chapman-Novakofski K. Role of dietary advanced glycation end products in diabetes mellitus. J Evid Based Complement Alternat Med. 2013;18(1):50–66. doi:10.1177/2156587212460054.

    Article  CAS  Google Scholar 

  22. Hegab Z, Gibbons S, Neyses L, Mamas MA. Role of advanced glycation end products in cardiovascular disease. World J Cardiol. 2012;4(4):90–102. doi:10.4330/wjc.v4.i4.90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Simm A. Protein glycation during aging and in cardiovascular disease. J Proteome. 2013;92:248–59. doi:10.1016/j.jprot.2013.05.012.

    Article  CAS  Google Scholar 

  24. Campbell DJ, Somaratne JB, Jenkins AJ, Prior DL, Yii M, Kenny JF, et al. Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS One. 2012;7(11):e49813. doi:10.1371/journal.pone.0049813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab. 2014;3(2):94–108. doi:10.1016/j.molmet.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation end-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol. 2015;52(12):7561–76. doi:10.1007/s13197-015-1851-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267(21):14998–5004.

    CAS  PubMed  Google Scholar 

  28. Yan SF, Ramasamy R, Schmidt AM. The receptor for advanced glycation end products (RAGE) and cardiovascular disease. Expert Rev Mol Med. 2009;11:e9. doi:10.1017/S146239940900101X.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, et al. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem. 1999;274(44):31740–9.

    Article  CAS  PubMed  Google Scholar 

  30. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005;83(11):876–86. doi:10.1007/s00109-005-0688-7.

    Article  CAS  Google Scholar 

  31. Rojas A, Delgado-Lopez F, Gonzalez I, Perez-Castro R, Romero J, Rojas I. The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal. 2013;25(3):609–14. doi:10.1016/j.cellsig.2012.11.022.

    Article  CAS  PubMed  Google Scholar 

  32. Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflamm. 2013;2013:403460. doi:10.1155/2013/403460.

    Article  Google Scholar 

  33. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63(4):582–92. doi:10.1016/j.cardiores.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  34. Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105(7):816–22.

    Article  CAS  PubMed  Google Scholar 

  35. Neumann A, Schinzel R, Palm D, Riederer P, Munch G. High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett. 1999;453(3):283–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3–21. doi:10.1016/j.diabres.2004.09.004.

    Article  CAS  PubMed  Google Scholar 

  37. Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol. 1998;44(7):1013–23.

    CAS  PubMed  Google Scholar 

  38. Xue J, Rai V, Singer D, Chabierski S, Xie J, Reverdatto S, et al. Advanced glycation end product recognition by the receptor for AGEs. Structure. 2011;19(5):722–32. doi:10.1016/j.str.2011.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed Engl. 2014;53(39):10316–29. doi:10.1002/anie.201308808. An important review about the history of the study of the Maillard reaction.

    Article  CAS  PubMed  Google Scholar 

  40. Finot PA. Historical perspective of the Maillard reaction in food science. Ann N Y Acad Sci. 2005;1043:1–8. doi:10.1196/annals.1333.001.

    Article  CAS  PubMed  Google Scholar 

  41. O'Brien J, Morrissey PA. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr. 1989;28(3):211–48. doi:10.1080/10408398909527499.

    Article  PubMed  Google Scholar 

  42. P-c C, C-c H, M-c Y. Analysis of glycative products in sauces and sauce-treated foods. Food Chem. 2009;113(1):262–6. doi:10.1016/j.foodchem.2008.06.076.

    Article  Google Scholar 

  43. Delgado-Andrade C. Carboxymethyl-lysine: thirty years of investigation in the field of AGE formation. Food Funct. 2016;7(1):46–57. doi:10.1039/c5fo00918a.

    Article  CAS  PubMed  Google Scholar 

  44. Stirban A, Tschoepe D. Comment on “Advanced glycation endproducts in food and their effects on health” by Poulsen et al. (2013) Food and Chemical Toxicology 60, 10–37. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2014;64:411. doi:10.1016/j.fct.2013.12.001.

    Article  CAS  Google Scholar 

  45. Hull GLJ, Woodside JV, Ames JM, Cuskelly GJ. Nε-(carboxymethyl)lysine content of foods commonly consumed in a western style diet. Food Chem. 2012;131(1):170–4. doi:10.1016/j.foodchem.2011.08.055.

    Article  CAS  Google Scholar 

  46. •• Scheijen JL, Clevers E, Engelen L, Dagnelie PC, Brouns F, Stehouwer CD, et al. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: presentation of a dietary AGE database. Food Chem. 2016;190:1145–50. doi:10.1016/j.Foodchem.2015.06.049. An article presenting a food database with the amount of CML in foods.

    Article  CAS  PubMed  Google Scholar 

  47. Erbersdobler HF, Somoza V. Forty years of furosine—forty years of using Maillard reaction products as indicators of the nutritional quality of foods. Mol Nutr Food Res. 2007;51(4):423–30. doi:10.1002/mnfr.200600154.

    Article  CAS  PubMed  Google Scholar 

  48. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–16.e12. doi:10.1016/j.jada.2010.03.018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peiretti PG, Medana C, Visentin S, Dal Bello F, Meineri G. Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat. Food Chem. 2012;132(1):80–5. doi:10.1016/j.foodchem.2011.10.035.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res. 2009;8(2):754–69. doi:10.1021/pr800858h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vlassara H, Cai W, Goodman S, Pyzik R, Yong A, Chen X, et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J Clin Endocrinol Metab. 2009;94(11):4483–91. doi:10.1210/jc.2009-0089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62(4):427–33.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Uribarri J, Cai W, Pyzik R, Goodman S, Chen X, Zhu L, et al. Suppression of native defense mechanisms, SIRT1 and PPARgamma, by dietary glycoxidants precedes disease in adult humans; relevance to lifestyle-engendered chronic diseases. Amino Acids. 2014;46(2):301–9. doi:10.1007/s00726-013-1502-4.

    Article  CAS  PubMed  Google Scholar 

  54. Birlouez-Aragon I, Saavedra G, Tessier FJ, Galinier A, Ait-Ameur L, Lacoste F, et al. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr. 2010;91(5):1220–6. doi:10.3945/ajcn.2009.28737.

    Article  CAS  PubMed  Google Scholar 

  55. Uribarri J, Cai W, Ramdas M, Goodman S, Pyzik R, Chen X, et al. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Diabetes Care. 2011;34(7):1610–6. doi:10.2337/dc11-0091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94(12):6474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999;48(6):1308–15.

    Article  CAS  PubMed  Google Scholar 

  58. Henle T. AGEs in foods: do they play a role in uremia? Kidney Int Suppl. 2003;63(84):S145–7.

    Article  Google Scholar 

  59. •• Hellwig M, Matthes R, Peto A, Lobner J, Henle T. N-epsilon-fructosyllysine and N-epsilon-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion. Amino Acids. 2014;46(2):289–99. doi:10.1007/s00726-013-1501-5. A study showing the in vitro digestion of some AGEs.

    Article  CAS  PubMed  Google Scholar 

  60. Geissler S, Hellwig M, Zwarg M, Markwardt F, Henle T, Brandsch M. Transport of the advanced glycation end products alanylpyrraline and pyrralylalanine by the human proton-coupled peptide transporter hPEPT1. J Agric Food Chem. 2010;58(4):2543–7. doi:10.1021/jf903791u.

    Article  CAS  PubMed  Google Scholar 

  61. Hellwig M, Geissler S, Matthes R, Peto A, Silow C, Brandsch M, et al. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Chembiochem. 2011;12(8):1270–9. doi:10.1002/cbic.201000759.

    Article  CAS  PubMed  Google Scholar 

  62. Delgado-Andrade C, Tessier FJ, Niquet-Leridon C, Seiquer I, Pilar NM. Study of the urinary and faecal excretion of Nepsilon-carboxymethyllysine in young human volunteers. Amino Acids. 2012;43(2):595–602. doi:10.1007/s00726-011-1107-8.

    Article  CAS  PubMed  Google Scholar 

  63. Foerster A, Henle T. Glycation in food and metabolic transit of dietary AGEs (advanced glycation end-products): studies on the urinary excretion of pyrraline. Biochem Soc Trans. 2003;31(Pt 6):1383–5. doi:10.1042/

    Article  CAS  PubMed  Google Scholar 

  64. Miyata T, Ueda Y, Horie K, Nangaku M, Tanaka S, van Ypersele de Strihou C, et al. Renal catabolism of advanced glycation end products: the fate of pentosidine. Kidney Int. 1998;53(2):416–22. doi:10.1046/j.1523-1755.1998.00756.x.

    Article  CAS  PubMed  Google Scholar 

  65. • Roncero-Ramos I, Niquet-Leridon C, Strauch C, Monnier VM, Tessier FJ, Navarro MP, et al. An advanced glycation end product (AGE)-rich diet promotes Nepsilon-carboxymethyl-lysine accumulation in the cardiac tissue and tendons of rats. J Agric food Chem. 2014;62(25):6001–6. doi:10.1021/jf501005n. A study showing accumulation of CML in tissues.

    Article  CAS  PubMed  Google Scholar 

  66. • Li M, Zeng M, He Z, Zheng Z, Qin F, Tao G, et al. Effects of long-term exposure to free Nepsilon-(carboxymethyl)lysine on rats fed a high-fat diet. J Agric Food Chem. 2015;63(51):10995–1001. doi:10.1021/acs.jafc.5b05750. A study showing accumulation of CML in tissues.

  67. •• Tessier FJ, Niquet-Leridon C, Jacolot P, Jouquand C, Genin M, Schmidt AM, et al. Quantitative assessment of organ distribution of dietary protein-bound 13 C-labeled Nɛ-carboxymethyllysine after a chronic oral exposure in mice. Mol Nutr Food Res. 2016;60(11):2446–56. doi:10.1002/mnfr.201600140.6. A study showing accumulation of CML in tissues.

  68. Penfold SA, Coughlan MT, Patel SK, Srivastava PM, Sourris KC, Steer D, et al. Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney Int. 2010;78(3):287–95. doi:10.1038/ki.2010.134.

    Article  CAS  PubMed  Google Scholar 

  69. Somoza V, Lindenmeier M, Hofmann T, Frank O, Erbersdobler HF, Baynes JW, et al. Dietary bread crust advanced glycation end products bind to the receptor for AGEs in HEK-293 kidney cells but are rapidly excreted after oral administration to healthy and subtotally nephrectomized rats. Ann N Y Acad Sci. 2005;1043:492–500. doi:10.1196/annals.1333.056.

    Article  CAS  PubMed  Google Scholar 

  70. Zill H, Bek S, Hofmann T, Huber J, Frank O, Lindenmeier M, et al. RAGE-mediated MAPK activation by food-derived AGE and non-AGE products. Biochem Biophys Res Commun. 2003;300(2):311–5.

    Article  CAS  PubMed  Google Scholar 

  71. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15(7):16R–28R. doi:10.1093/glycob/cwi053.

    Article  CAS  PubMed  Google Scholar 

  72. Forbes JM, Sourris KC, de Courten MP, Dougherty SL, Chand V, Lyons JG, et al. Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects. Amino Acids. 2014;46(2):321–6. doi:10.1007/s00726-013-1542-9.

    Article  CAS  PubMed  Google Scholar 

  73. Ottum MS, Mistry AM. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr. 2015;57(1):1–12. doi:10.3164/jcbn.15-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. • Poulsen MW, Andersen JM, Hedegaard RV, Madsen AN, Krath BN, Monosik R, et al. Short-term effects of dietary advanced glycation end products in rats. Br J Nutr. 2016;115(4):629–36. doi:10.1017/s0007114515004833. A study showing increase expression of RAGE after a short-term intervention.

    Article  CAS  PubMed  Google Scholar 

  75. • Lv X, Lv GH, Dai GY, Sun HM, Xu HQ. Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway. Chin J Nat Med. 2016;14(11):844–55. doi:10.1016/S1875-5364(16)30101-7. A study showing increase expression of RAGE after a short-term intervention.

    PubMed  Google Scholar 

  76. • Grossin N, Auger F, Niquet-Leridon C, Durieux N, Montaigne D, Schmidt AM, et al. Dietary dCML-enriched protein induces functional arterial aging in a RAGE-dependent manner in mice. Mol Nutr Food Res. 2015;59(5):927–38. doi:10.1002/mnfr.201400643. A study showing increase arterial aging after AGE intake.

    Article  CAS  PubMed  Google Scholar 

  77. Coughlan MT, Yap FY, Tong DC, Andrikopoulos S, Gasser A, Thallas-Bonke V, et al. Advanced glycation end products are direct modulators of beta-cell function. Diabetes. 2011;60(10):2523–32. doi:10.2337/db10-1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A. 2012;109(39):15888–93. doi:10.1073/pnas.1205847109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chao PC, Huang CN, Hsu CC, Yin MC, Guo YR. Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1alpha and MCP-1 levels in type 2 diabetic patients. Eur J Nutr. 2010;49(7):429–34. doi:10.1007/s00394-010-0101-3.

    Article  CAS  PubMed  Google Scholar 

  80. • Angoorani P, Ejtahed HS, Mirmiran P, Mirzaei S, Azizi F. Dietary consumption of advanced glycation end products and risk of metabolic syndrome. Int J Food Sci Nutr. 2016;67(2):170–6. doi:10.3109/09637486.2015.1137889. A study observing and evaluating the risk between dietary AGEs and risk factors for the metabolic syndrome.

  81. Stirban A, Negrean M, Gotting C, Uribarri J, Gawlowski T, Stratmann B, et al. Dietary advanced glycation endproducts and oxidative stress: in vivo effects on endothelial function and adipokines. Ann N Y Acad Sci. 2008;1126:276–9. doi:10.1196/annals.1433.042.

    Article  CAS  PubMed  Google Scholar 

  82. Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Gotting C, et al. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85(5):1236–43.

    CAS  PubMed  Google Scholar 

  83. Uribarri J, Stirban A, Sander D, Cai W, Negrean M, Buenting CE, et al. Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care. 2007;30(10):2579–82. doi:10.2337/dc07-0320.

    Article  CAS  PubMed  Google Scholar 

  84. Poulsen MW, Bak MJ, Andersen JM, Monosik R, Giraudi-Futin AC, Holst JJ, et al. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals. Eur J Nutr. 2014;53(2):661–72. doi:10.1007/s00394-013-0574-y.

    Article  CAS  PubMed  Google Scholar 

  85. Uribarri J, Peppa M, Cai W, Goldberg T, Lu M, Baliga S, et al. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am J Kidney Dis. 2003;42(3):532–8.

    Article  CAS  PubMed  Google Scholar 

  86. Peppa M, Uribarri J, Cai W, Lu M, Vlassara H. Glycoxidation and inflammation in renal failure patients. Am J Kidney Dis. 2004;43(4):690–5.

    Article  CAS  PubMed  Google Scholar 

  87. Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99(24):15596–601. doi:10.1073/pnas.242407999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cai W, He JC, Zhu L, Peppa M, Lu C, Uribarri J, et al. High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients. Circulation. 2004;110(3):285–91. doi:10.1161/01.cir.0000135587.92455.0d.

    Article  CAS  PubMed  Google Scholar 

  89. Luevano-Contreras C, Garay-Sevilla ME, Wrobel K, Malacara JM, Wrobel K. Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. J Clin Biochem Nutr. 2013;52(1):22–6. doi:10.3164/jcbn.12-40.

    Article  CAS  PubMed  Google Scholar 

  90. • Clarke RE, Dordevic AL, Tan SM, Ryan L, Coughlan MT. Dietary advanced glycation end products and risk factors for chronic disease: a systematic review of randomised controlled trials. Nutrients. 2016;8(3):125. doi:10.3390/nu8030125. An interesting systematic review of clinical trials with dietary AGE intervention.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Harcourt BE, Sourris KC, Coughlan MT, Walker KZ, Dougherty SL, Andrikopoulos S, et al. Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int. 2011;80(2):190–8. doi:10.1038/ki.2011.57.

    Article  CAS  PubMed  Google Scholar 

  92. •• Mark AB, Poulsen MW, Andersen S, Andersen JM, Bak MJ, Ritz C, et al. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women. Diabetes Care. 2014;37(1):88–95. doi:10.2337/dc13-0842. A study evaluating the effects on insulin sensitivity after a low-AGE intervention.

    Article  CAS  PubMed  Google Scholar 

  93. •• de Courten B, de Courten MP, Soldatos G, Dougherty SL, Straznicky N, Schlaich M, et al. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial. Am J Clin Nutr. 2016;103(6):1426–33. doi:10.3945/ajcn.115.125427. A study evaluating the effects on insulin sensitivity after a low-AGE intervention.

    Article  PubMed  Google Scholar 

  94. Di Pino A, Currenti W, Urbano F, Mantegna C, Purrazzo G, Piro S, et al. Low advanced glycation end product diet improves the lipid and inflammatory profiles of prediabetic subjects. J Clin Lipidol. 2016;10(5):1098–108. doi:10.1016/j.jacl.2016.07.001. A study evaluating the lipid and inflammatory profile after a low-AGE intervention.

    Article  PubMed  Google Scholar 

  95. Vlassara H, Cai W, Tripp E, Pyzik R, Yee K, Goldberg L, et al. Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia. 2016;59(10):2181–92. doi:10.1007/s00125-016-4053-x. A study evaluating the lipid and inflammatory profile after a low-AGE intervention.

    Article  CAS  PubMed  Google Scholar 

  96. Semba RD, Gebauer SK, Baer DJ, Sun K, Turner R, Silber HA, et al. Dietary intake of advanced glycation end products did not affect endothelial function and inflammation in healthy adults in a randomized controlled trial. J Nutr. 2014;144(7):1037–42. doi:10.3945/jn.113.189480. A study evaluating endothelial function and inflammatory profile in healthy subjects after a low-AGE intervention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ross R, Hudson R, Stotz PJ, Lam M. Effects of exercise amount and intensity on abdominal obesity and glucose tolerance in obese adults: a randomized trial. Ann Intern Med. 2015;162(5):325–34. doi:10.7326/m14-1189.

    Article  PubMed  Google Scholar 

  98. Vargas-Ortiz K, Macias-Cervantes MH, Diaz-Cisneros FJ, Perez-Vazquez V. Aerobic 12-week training reduces cardiovascular risk factors in overweight teenagers. Gac Med Mex. 2014;150(Suppl 1):120–4.

    PubMed  Google Scholar 

  99. Macias-Cervantes MH, Malacara JM, Garay-Sevilla ME, Diaz-Cisneros FJ. Effect of recreational physical activity on insulin levels in Mexican/Hispanic children. Eur J Pediatr. 2009;168(10):1195–202. doi:10.1007/s00431-008-0907-7.

    Article  CAS  PubMed  Google Scholar 

  100. Couppe C, Svensson RB, Grosset JF, Kovanen V, Nielsen RH, Olsen MR, et al. Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. Age (Dordr, Netherlands). 2014;36(4):9665. doi:10.1007/s11357-014-9665-9.

    Article  Google Scholar 

  101. Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010;108(1):191–5. doi:10.1007/s00421-009-1192-5.

    Article  CAS  PubMed  Google Scholar 

  102. Goon JA, Aini AH, Musalmah M, Anum MY, Nazaimoon WM, Ngah WZ. Effect of tai chi exercise on DNA damage, antioxidant enzymes, and oxidative stress in middle-age adults. J Phys Act Health. 2009;6(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  103. Yoshikawa T, Miyazaki A, Fujimoto S. Decrease in serum levels of advanced glycation end-products by short-term lifestyle modification in non-diabetic middle-aged females. Med Sci Monit. 2009;15(6):PH65–73.

    CAS  PubMed  Google Scholar 

  104. Macias-Cervantes MH, Rodriguez-Soto JM, Uribarri J, Diaz-Cisneros FJ, Cai W, Garay-Sevilla ME. Effect of an advanced glycation end product-restricted diet and exercise on metabolic parameters in adult overweight men. Nutrition (Burbank, Los Angeles County, Calif). 2015;31(3):446–51. doi:10.1016/j.nut.2014.10.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Telyan group and Edna Patiño for their collaboration with figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Luévano-Contreras.

Ethics declarations

Conflict of Interest

Claudia Luévano-Contreras, Armando Gómez-Ojeda, Maciste Habacuc, Macías-Cervantes, and Ma. Eugenia Garay-Sevilla declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luévano-Contreras, C., Gómez-Ojeda, A., Macías-Cervantes, M.H. et al. Dietary Advanced Glycation End Products and Cardiometabolic Risk. Curr Diab Rep 17, 63 (2017). https://doi.org/10.1007/s11892-017-0891-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0891-2

Keywords

Navigation