Skip to main content

Advertisement

Log in

Betatrophin in Diabetes Mellitus: the Epidemiological Evidence in Humans

  • Diabetes Epidemiology (NM Maruthur, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The prevalence of type 2 diabetes is increasing worldwide, and while numerous treatments exist, none of the current pharmacologic therapies is curative. Pharmacologic approaches that increase beta cell mass may present an avenue for actual cure. There have been numerous reports on factors that can induce beta cell proliferation in rodents, whereas there are still very limited data on the occurrence of beta cell proliferation in humans. The recent discovery of the hormone betatrophin, which in mice counteracted glucose intolerance induced by insulin resistance by potently stimulating beta cell proliferation, has boosted the hope for a new target for drug development for the treatment of diabetes mellitus in humans. With the encouraging preclinical findings as a background, this review presents the available clinical data on betatrophin and discusses its possible role in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lam DW, LeRoith D. The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes. 2012;19(2):93–6.

    Article  PubMed  Google Scholar 

  2. Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC. Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care. 2006;29(3):717–8.

    Article  PubMed  Google Scholar 

  3. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  4. Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10 Suppl 4:32–42.

    Article  PubMed  Google Scholar 

  5. Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia. 1983;24(5):366–71.

    Article  CAS  PubMed  Google Scholar 

  6. Clark A, Jones LC, de Koning E, Hansen BC, Matthews DR. Decreased insulin secretion in type 2 diabetes: a problem of cellular mass or function? Diabetes. 2001;50 Suppl 1:S169–71.

    Article  CAS  PubMed  Google Scholar 

  7. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14(10):619–33.

    Article  CAS  PubMed  Google Scholar 

  8. Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59(11):2846–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wang L, Lovejoy NF, Faustman DL. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care. 2012;35(3):465–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Oram RA, Jones AG, Besser RE, et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia. 2014;57(1):187–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF. Human beta-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes. 2012;61(9):2205–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocana A. Human beta-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes. 2014;63(3):819–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Stewart AF, Hussain MA, Garcia-Ocana A, et al. Human beta-cell proliferation and intracellular signaling: part 3. Diabetes. 2015;64(6):1872–85.

    Article  CAS  PubMed  Google Scholar 

  14. Wang P, Fiaschi-Taesch NM, Vasavada RC, Scott DK, Garcia-Ocana A, Stewart AF. Diabetes mellitus—advances and challenges in human beta-cell proliferation. Nat Rev Endocrinol. 2015;11(4):201–12.

    CAS  PubMed  Google Scholar 

  15. Gregg BE, Moore PC, Demozay D, et al. Formation of a human beta-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab. 2012;97(9):3197–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Meier JJ, Butler AE, Saisho Y, et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes. 2008;57(6):1584–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Perl S, Kushner JA, Buchholz BA, et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab. 2010;95(10):E234–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Menge BA, Tannapfel A, Belyaev O, et al. Partial pancreatectomy in adult humans does not provoke beta-cell regeneration. Diabetes. 2008;57(1):142–9.

    Article  CAS  PubMed  Google Scholar 

  19. Butler AE, Cao-Minh L, Galasso R, et al. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia. 2010;53(10):2167–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Parnaud G, Bosco D, Berney T, et al. Proliferation of sorted human and rat beta cells. Diabetologia. 2008;51(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  21. Banerjee M, Virtanen I, Palgi J, Korsgren O, Otonkoski T. Proliferation and plasticity of human beta cells on physiologically occurring laminin isoforms. Mol Cell Endocrinol. 2012;355(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  22. Levitt HE, Cyphert TJ, Pascoe JL, et al. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia. 2011;54(3):572–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Purwana I, Zheng J, Li X, et al. GABA promotes human beta-cell proliferation and modulates glucose homeostasis. Diabetes. 2014;63(12):4197–205.

    Article  CAS  PubMed  Google Scholar 

  24. Dirice E, Kahraman S, Jiang W, et al. Soluble factors secreted by T cells promote beta-cell proliferation. Diabetes. 2014;63(1):188–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. In't Veld P, De Munck N, Van Belle K, et al. Beta-cell replication is increased in donor organs from young patients after prolonged life support. Diabetes. 2010;59(7):1702–8.

    Article  PubMed  Google Scholar 

  26. Grapensparr L, Vasylovska S, Li Z, et al. Co-transplantation of human pancreatic islets with post-migratory neural crest stem cells increases beta-cell proliferation and vascular and neural regrowth. J Clin Endocrinol Metab. 2015;100(4):E583–90.

    Article  CAS  PubMed  Google Scholar 

  27. Takane KK, Kleinberger JW, Salim FG, Fiaschi-Taesch NM, Stewart AF. Regulated and reversible induction of adult human beta-cell replication. Diabetes. 2012;61(2):418–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Fiaschi-Taesch N, Bigatel TA, Sicari B, et al. Survey of the human pancreatic beta-cell G1/S proteome reveals a potential therapeutic role for cdk-6 and cyclin D1 in enhancing human beta-cell replication and function in vivo. Diabetes. 2009;58(4):882–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fiaschi-Taesch NM, Salim F, Kleinberger J, et al. Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes. 2010;59(8):1926–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Imai J, Katagiri H, Yamada T, et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science. 2008;322(5905):1250–4.

    Article  CAS  PubMed  Google Scholar 

  31. Olerud J, Mokhtari D, Johansson M, et al. Thrombospondin-1: an islet endothelial cell signal of importance for {beta}-cell function. Diabetes. 2011;60(7):1946–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yi P, Park JS, Melton DA. Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell. 2013;153(4):747–58. The publication in which betatrophin and its effects on beta cell proliferation in mice was first described.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA. Butler PC: beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36(1):111–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Sullivan BA, Hollister-Lock J, Bonner-Weir S, Weir GC. Reduced Ki67 staining in the postmortem state calls into question past conclusions about the lack of turnover of adult human beta-cells. Diabetes. 2015;64(5):1698–702.

    Article  CAS  PubMed  Google Scholar 

  35. Tyrberg B, Ustinov J, Otonkoski T, Andersson A. Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets: effects of the ob gene and compensatory growth of the implantation organ. Diabetes. 2001;50(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  36. Gargani S, Thevenet J, Yuan JE, et al. Adaptive changes of human islets to an obesogenic environment in the mouse. Diabetologia. 2013;56(2):350–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dong XY, Pang XW, Yu ST, et al. Identification of genes differentially expressed in human hepatocellular carcinoma by a modified suppression subtractive hybridization method. Int J Cancer. 2004;112(2):239–48.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun. 2012;424(4):786–92.

    Article  CAS  PubMed  Google Scholar 

  39. Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab. 2012;303(3):E334–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Quagliarini F, Wang Y, Kozlitina J, et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci U S A. 2012;109(48):19751–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Fu Z, Yao F, Abou-Samra AB, Zhang R. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem Biophys Res Commun. 2013;430(3):1126–31.

    Article  CAS  PubMed  Google Scholar 

  42. Jiao Y, Le Lay J, Yu M, Naji A, Kaestner KH. Elevated mouse hepatic betatrophin expression does not increase human beta-cell replication in the transplant setting. Diabetes. 2014;63(4):1283–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wang Y, Quagliarini F, Gusarova V, et al. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc Natl Acad Sci U S A. 2013;110(40):16109–14. The authors have investigated mice lacking betatrophin and found no negative effect on glucose homeostasis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Gusarova V, Alexa CA, Na E, et al. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell. 2014;159(3):691–6. Gusarova et al. found that mice lacking betatrophin have a normal development of beta cell mass and a normal response and increase in beta cell proliferation in response to insulin resistance which puts the relevance of betatrophin into question.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Cox AR, Lam CJ, Bonnyman CW, Chavez J, Rios JS, Kushner JA. Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia. 2015;58(7):1523–31. The authors have overexpressed betatrophin but do not find any increase in beta cell proliferation or beta cell mass which questions the findings of Ye et al. [32].

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Abu-Farha M, Abubaker J, Al-Khairi I, et al. Higher plasma betatrophin/ANGPTL8 level in Type 2 Diabetes subjects does not correlate with blood glucose or insulin resistance. Sci Rep. 2015;5:10949. The largest study so far on circulating betatrophin levels in healthy- and individuals with type 2 diabetes. The betatrophin levels were found to be increased in type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  47. Espes D, Lau J, Carlsson PO. Increased circulating levels of betatrophin in individuals with long-standing type 1 diabetes. Diabetologia. 2014;57(1):50–3. The first publication on circulating betatrophin levels in plasma in healthy individuals and individuals with type 1 diabetes. In contrast to the animal model we found the levels of betatrophin to be increased in patients with type 1 diabetes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fenzl A, Itariu BK, Kosi L, et al. Circulating betatrophin correlates with atherogenic lipid profiles but not with glucose and insulin levels in insulin-resistant individuals. Diabetologia. 2014;57(6):1204–8. The first publication on circulating betatrophin levels in patients with type 2 diabetes, no difference in betatrophin levels between healthy- and individuals with type 2 diabetes was observed.

    Article  CAS  PubMed  Google Scholar 

  49. Espes D, Martinell M, Carlsson PO. Increased circulating betatrophin concentrations in patients with type 2 diabetes. Int J Endocrinol. 2014;2014:323407.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chen X, Lu P, He W, et al. Circulating betatrophin levels are increased in patients with type 2 diabetes and associated with insulin resistance. J Clin Endocrinol Metab. 2015;100(1):E96–100.

    Article  CAS  PubMed  Google Scholar 

  51. Wu S, Gao H, Ma Y, Fu L, Zhang C, Luo X. Characterisation of betatrophin concentrations in childhood and adolescent obesity and insulin resistance. Pediatr Diabetes. 2014.

  52. Gomez-Ambrosi J, Pascual E, Catalan V, et al. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J Clin Endocrinol Metab. 2014;99(10):E2004–9.

    Article  CAS  PubMed  Google Scholar 

  53. Fu Z, Berhane F, Fite A, Seyoum B, Abou-Samra AB, Zhang R. Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Sci Rep. 2014;4:5013.

    CAS  PubMed  Google Scholar 

  54. Hu H, Sun W, Yu S, et al. Increased circulating levels of betatrophin in newly diagnosed type 2 diabetic patients. Diabetes Care. 2014;37(10):2718–22.

    Article  CAS  PubMed  Google Scholar 

  55. Guo K, Lu J, Yu H, et al. Serum betatrophin concentrations are significantly increased in overweight but not in obese or type 2 diabetic individuals. Obesity (Silver Spring). 2015;23(4):793–7.

    Article  CAS  Google Scholar 

  56. Tokumoto S, Hamamoto Y, Fujimoto K, et al. Correlation of circulating betatrophin concentrations with insulin secretion capacity, evaluated by glucagon stimulation tests. Diabet Med. 2015;32(5):653–6.

    Article  CAS  PubMed  Google Scholar 

  57. Xie X, Gao T, Yang M, et al. Associations of betatrophin levels with irisin in Chinese women with normal glucose tolerance. Diabetol Metab Syndr. 2015;7:26.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Gokulakrishnan K, Manokaran K, Pandey GK, et al. Relationship of betatrophin with youth onset type 2 diabetes among Asian Indians. Diabetes Res Clin Pract. 2015;109(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  59. Fu Z, Abou-Samra AB, Zhang R. An explanation for recent discrepancies in levels of human circulating betatrophin. Diabetologia. 2014;57(10):2232–4. This study describe the different ELISA kits used to measure betatrophin which explain some of the differences in the published levels and correlations of betatrophin.

    Article  PubMed  Google Scholar 

  60. Yamada H, Saito T, Aoki A, et al. Circulating betatrophin is elevated in patients with type 1 and type 2 diabetes. Endocr J. 2015;62(5):417–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The original research cited from our group was generously supported by the Swedish Research Council (K2013-55X-15043), the EFSD/JDRF/Novo Nordisk Programme 2012, AFA Insurance, the Swedish Diabetes Association, the Swedish Juvenile Diabetes Foundation, Olle Engkvist Byggmästare Foundation, and the Novo Nordisk Foundation and Diabetes Wellness Sverige.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Ola Carlsson.

Ethics declarations

Conflicts of Interest

Daniel Espes, Mats Martinell, Hanna Liljebäck, and Per-Ola Carlsson have no conflict of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any original studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diabetes Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espes, D., Martinell, M., Liljebäck, H. et al. Betatrophin in Diabetes Mellitus: the Epidemiological Evidence in Humans. Curr Diab Rep 15, 104 (2015). https://doi.org/10.1007/s11892-015-0676-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0676-4

Keywords

Navigation