Skip to main content

Advertisement

Log in

Bariatric Surgery: Prevalence, Predictors, and Mechanisms of Diabetes Remission

  • Obesity (J McCaffery, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes is a chronic disease that can be treated with pharmacologic and/or lifestyle interventions, but in most cases it does not get cured. One of the few interventions, however, that can remit diabetes is the Roux-en-Y gastric bypass (RYGB) surgery. Approximately 63 % of patients undergoing RYGB surgery experience diabetes remission, but the underlying mechanisms are poorly understood. Some studies implicate enterohepatic pathways with bile acids, fibroblast growth factor 19 (FGF19), and glucagon-like peptide 1 (GLP-1) being the primary components. Here, we discuss these enterohepatic changes and highlight the roles of bile acids, FGF19, and GLP-1 in diabetes remission. We also describe how we can now actually predict, prior to surgery, the probability for remitting diabetes after RYGB surgery by using the DiaRem score. Deeper understanding of the mechanisms of diabetes remission by RYGB surgery could provide the basis for developing more effective interventions for curing the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  2. American DA. Economic costs of diabetes in the U.S. In 2007. Diabetes Care. 2008;31(3):596–615. doi:10.2337/dc08-9017.

    Article  Google Scholar 

  3. NationalCenterChronicDiseasePreventionandHealthPromotion. National Diabetes Statistics Report, 2014. Cent Dis Control. 2014;http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf.

  4. American Diabetes Association. Standards of medical care in diabetes--2012. Diabetes Care. 2012;35(1):S11–63.

    Google Scholar 

  5. Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, et al. How do we define cure of diabetes? Diabetes Care. 2009;32(11):2133–5.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96. doi:10.1001/jama.2012.67929.

    Article  CAS  PubMed  Google Scholar 

  7. Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L, Bessler M, et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and beta-cell Function in type 2 diabetic patients. Diabetes. 2013;62(9):3027–32. doi:10.2337/db12-1762. This manuscript reports that, in the short term, a very low calorie (500 kcal/day) diet improves insulin sensitivity as well as RYGB.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Campos GM, Rabl C, Havel PJ, Rao M, Schwarz JM, Schambelan M, et al. Changes in post-prandial glucose and pancreatic hormones, and steady-state insulin and free fatty acids after gastric bypass surgery. Surg Obes Relat Dis : Off J Am Soc Bariatric Surg. 2014;10(1):1–8. doi:10.1016/j.soard.2013.07.010.

    Article  Google Scholar 

  9. Herbst CA, Hughes TA, Gwynne JT, Buckwalter JA. Gastric bariatric operation in insulin-treated adults. Surgery. 1984;95(2):209–14.

    CAS  PubMed  Google Scholar 

  10. Stunkard AJ, Stinnett JL, Smoller JW. Psychological and social aspects of the surgical treatment of obesity. Am J Psychiatry. 1986;143(4):417–29.

    Article  CAS  PubMed  Google Scholar 

  11. Gleysteen JJ, Barboriak JJ, Sasse EA. Sustained coronary-risk-factor reduction after gastric bypass for morbid obesity. Am J Clin Nutr. 1990;51(5):774–8.

    CAS  PubMed  Google Scholar 

  12. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50. discussion 50-2. One of the earlier studies that used data from 608 patients over 14 years to conclude that RYGB effectively remits type 2 diabetes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Benotti PN, Forse RA. The role of gastric surgery in the multidisciplinary management of severe obesity. Am J Surg. 1995;169(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  15. Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304. doi:10.1001/jama.2014.5988.

    Article  PubMed  Google Scholar 

  16. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85. doi:10.1056/NEJMoa1200111.

    Article  CAS  PubMed  Google Scholar 

  17. Schauer PR, Bhatt DL, Kashyap SR. Bariatric surgery versus intensive medical therapy for diabetes. N Engl J Med. 2014;371(7):682. doi:10.1056/NEJMc1407393.

    PubMed  Google Scholar 

  18. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. doi:10.1056/NEJMoa1200225.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kohli R, Seeley RJ. Diabetes: the search for mechanisms underlying bariatric surgery. Nat Rev Endocrinol. 2013;9(10):572–4. doi:10.1038/nrendo.2013.159.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2(2):152–64. doi:10.1016/S2213-8587(13)70218-3.

    Article  CAS  PubMed  Google Scholar 

  21. Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 2008;8(1):77–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74. doi:10.1146/annurev.biochem.72.121801.161712.

    Article  CAS  PubMed  Google Scholar 

  23. Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50(10):1955–66. doi:10.1194/jlr.R900010-JLR200. This is a thorough review of the physiology of bile acids and their enterohepatic signaling mechanisms.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y. FXR, a multipurpose nuclear receptor. Trends Biochem Sci. 2006;31(10):572–80. doi:10.1016/j.tibs.2006.08.002.

    Article  CAS  PubMed  Google Scholar 

  25. Jansen PL, van Werven J, Aarts E, Berends F, Janssen I, Stoker J, et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis. 2011;29(1):48–51.

    Article  PubMed  Google Scholar 

  26. Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7.

    Article  CAS  Google Scholar 

  27. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143(5):1741–7.

    Article  CAS  PubMed  Google Scholar 

  28. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5(6):415–25.

    Article  CAS  PubMed  Google Scholar 

  29. Lundasen T, Galman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med. 2006;260(6):530–6.

    Article  CAS  PubMed  Google Scholar 

  30. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003;17(13):1581–91. doi:10.1101/gad.1083503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2(4):217–25.

    Article  CAS  PubMed  Google Scholar 

  32. Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36(7):1859–64. doi:10.2337/dc12-2255. This is the first study that grouped RYGB patients according to their diabetes status and determined that bile acids and FGF19 increase after RYGB surgery to a greater extent in patients who remit diabetes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Song KH, Li T, Owsley E, Strom S, Chiang JY. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology. 2009;49(1):297–305. doi:10.1002/hep.22627.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Simonen M, Dali-Youcef N, Kaminska D, Venesmaa S, Kakela P, Paakkonen M, et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass. Obes Surg. 2012;22(9):1473–80. doi:10.1007/s11695-012-0673-5.

    Article  CAS  PubMed  Google Scholar 

  35. Kir S, Kliewer SA, Mangelsdorf DJ. Roles of FGF19 in liver metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:139–44.

    Article  CAS  PubMed  Google Scholar 

  36. Styer AM, Roesch SL, Argyropoulos G. Modulation of fibroblast growth factor 19 expression by bile acids, meal replacement and energy drinks, milk, and coffee. PLoS One. 2014;9(1):e85558.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Adrian TE, Gariballa S, Parekh KA, Thomas SA, Saadi H, Al Kaabi J, et al. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia. 2012;55(9):2343–7. doi:10.1007/s00125-012-2593-2.

    Article  CAS  PubMed  Google Scholar 

  38. Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ, et al. Colesevelam Suppresses Hepatic Glycogenolysis by TGR5-mediated Induction of GLP-1 Action in DIO mice. Am J Physiol Gastrointest Liver Physiol. 2012. doi:10.1152/ajpgi.00400.2012.

    PubMed Central  PubMed  Google Scholar 

  39. Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab. 2012. doi:10.1111/dom.12043.

    PubMed Central  Google Scholar 

  40. Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;36(10):909–21. doi:10.1111/apt.12084.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab.14(6):747-57.

  42. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol.54(6):1263-72.

  43. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9. doi:10.1210/en.2011-2145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pournaras DJ, Osborne A, Hawkins SC, Vincent RP, Mahon D, Ewings P, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71. doi:10.1097/SLA.0b013e3181efc49a.

    Article  PubMed  Google Scholar 

  45. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98(4):E708–12. doi:10.1210/jc.2012-3736.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Vetter ML, Wadden TA, Teff KL, Khan Z, Carvajal R, Ritter S, et al. GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison to intensive lifestyle modification. Diabetes. 2014. doi:10.2337/db14-0558.

    PubMed  Google Scholar 

  47. Mendez CE, Tanenberg RJ, Pories W. Outcomes of Roux-en-Y gastric bypass surgery for severely obese patients with type 1 diabetes: a case series report. Diabetes Metab Syndr Obes. 2010;3:281–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23(1):93–102. doi:10.1007/s11695-012-0802-1.

    Article  PubMed  Google Scholar 

  49. Blackstone R, Bunt JC, Cortes MC, Sugerman HJ. Type 2 diabetes after gastric bypass: remission in five models using HbA1c, fasting blood glucose, and medication status. Surg Obes Relat Dis : Off J Am Soc Bariatric Surg. 2012;8(5):548–55.

    Article  Google Scholar 

  50. Still CD, Wood GC, Benotti P, Petrick AT, Gabrielsen J, Strodel WE, et al. A probability score for preoperative prediction of type 2 diabetes remission following RYGB surgery. Lancet Diabetes Endocrinol. 2014;2(1):38–45. doi:10.1016/S2213-8587(13)70070-6. This study reports the development of the DiaRem score for predicting the probability of diabetes remission after RYGB surgery.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Wood GC, Gerhard GS, Benotti P, Petrick AT, Gabrielsen JD, Strodel WE, et al. Preoperative use of incretins is associated with increased diabetes remission after RYGB surgery among patients taking insulin: a retrospective cohort analysis. Ann Surg. 2014. doi:10.1097/SLA.0000000000000588. This study reports that preoperative use of a GLP-1 agonist can increase the probability of diabetes remission after RYGB surgery for patients taking insulin from 4% to 22%.

    PubMed Central  Google Scholar 

  52. Adams AC, Coskun T, Rovira AR, Schneider MA, Raches DW, Micanovic R, et al. Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLoS One. 2012;7(5):e38438. doi:10.1371/journal.pone.0038438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Cicione C, Degirolamo C, Moschetta A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology. 2012;56(6):2404–11. doi:10.1002/hep.25929.

    Article  CAS  PubMed  Google Scholar 

  54. Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012;26(4):312–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35. doi:10.1172/JCI23606.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Gerhard GS, Styer AM, Strodel WE, Roesch SL, Yavorek A, Carey DJ, et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes (Lond). 2014;38(3):371–8. doi:10.1038/ijo.2013.152.

    Article  CAS  Google Scholar 

  57. Paranjape SA, Chan O, Zhu W, Acharya NK, Rogers AM, Hajnal A, et al. Improvement in hepatic insulin sensitivity after Roux-en-Y gastric bypass in a rat model of obesity is partially mediated via hypothalamic insulin action. Diabetologia. 2013;56(9):2055–8. doi:10.1007/s00125-013-2952-7.

    Article  CAS  PubMed  Google Scholar 

  58. Mithieux G. Crosstalk between gastrointestinal neurons and the brain in the control of food intake. Best Pract Res Clin Endocrinol Metab. 2014;28(5):739–44. doi:10.1016/j.beem.2014.03.004.

    Article  CAS  PubMed  Google Scholar 

  59. Shin AC, Berthoud HR. Food reward functions as affected by obesity and bariatric surgery. Int J Obes (Lond). 2011;35 Suppl 3:S40–4. doi:10.1038/ijo.2011.147.

    Article  Google Scholar 

  60. Berthoud HR, Lenard NR, Shin AC. Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1266–77. doi:10.1152/ajpregu.00028.2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902. doi:10.1136/gutjnl-2013-305008.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Ochner CN, Kwok Y, Conceicao E, Pantazatos SP, Puma LM, Carnell S, et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253(3):502–7. doi:10.1097/SLA.0b013e318203a289.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Schwartz MW, Seeley RJ, Tschop MH, Woods SC, Morton GJ, Myers MG, et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature. 2013;503(7474):59–66. doi:10.1038/nature12709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav. 2001;74(4–5):703–8.

    Article  CAS  PubMed  Google Scholar 

  65. Elmquist JK, Flier JS. Neuroscience. The fat-brain axis enters a new dimension. Science. 2004;304(5667):63–4.

    Article  CAS  PubMed  Google Scholar 

  66. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.

    Article  CAS  PubMed  Google Scholar 

  67. Schwartz MW. Brain pathways controlling food intake and body weight. Exp Biol Med (Maywood). 2001;226(11):978–81.

    CAS  Google Scholar 

  68. Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D, Lasser G, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes. 1996;45(4):531–5.

    Article  CAS  PubMed  Google Scholar 

  69. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.

    CAS  PubMed  Google Scholar 

  70. Sandoval D. CNS GLP-1 regulation of peripheral glucose homeostasis. Physiol Behav. 2008;94(5):670–4. doi:10.1016/j.physbeh.2008.04.018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Sandoval DA, Bagnol D, Woods SC, D'Alessio DA, Seeley RJ. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes. 2008;57(8):2046–54. doi:10.2337/db07-1824. This study reports the importance of central GLP-1 receptors in glucose metabolism.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sandoval D, Cota D, Seeley RJ. The integrative role of CNS fuel-sensing mechanisms in energy balance and glucose regulation. Annu Rev Physiol. 2008;70:513–35. doi:10.1146/annurev.physiol.70.120806.095256.

    Article  CAS  PubMed  Google Scholar 

  73. Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT, Stefanovski D, et al. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest. 2013. doi:10.1172/JCI70710.

    Google Scholar 

  74. Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 2013;154(1):9–15. doi:10.1210/en.2012-1891.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007;28(12):2382–6. doi:10.1016/j.peptides.2007.10.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Hsuchou H, Pan W, Kastin AJ. Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS. 2013;10(1):32. doi:10.1186/2045-8118-10-32.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Aron-Wisnewsky J, Clement K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr Atheroscler Rep. 2014;16(11):454. doi:10.1007/s11883-014-0454-9.

    Article  PubMed  Google Scholar 

  78. Aron-Wisnewsky J, Dore J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2012;9(10):590–8. doi:10.1038/nrgastro.2012.161.

    Article  PubMed  Google Scholar 

  79. Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148(6):563–9. doi:10.1001/jamasurg.2013.5.

    Article  CAS  PubMed  Google Scholar 

  80. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57. doi:10.2337/db10-0253.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22. doi:10.1038/tpj.2012.43.

    Article  CAS  PubMed  Google Scholar 

  82. Liou AP, Paziuk M, Luevano Jr JM, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41. doi:10.1126/scitranslmed.3005687.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Khan KN, Fujishita A, Kitajima M, Hiraki K, Nakashima M, Masuzaki H. Intra-uterine microbial colonization and occurrence of endometritis in women with endometriosisdagger. Hum Reprod. 2014. doi:10.1093/humrep/deu222.

    PubMed Central  Google Scholar 

  84. Khan MT, Nieuwdorp M, Backhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014. doi:10.1016/j.cmet.2014.07.006.

    PubMed  Google Scholar 

  85. Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab. 2009;35(6 Pt 2):518–23. doi:10.1016/S1262-3636(09)73459-7.

    Article  CAS  PubMed  Google Scholar 

  86. Bojsen-Moller KN, Dirksen C, Jorgensen NB, Jacobsen SH, Serup AK, Albers PH, et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes. 2014;63(5):1725–37. doi:10.2337/db13-1307.

    Article  PubMed  Google Scholar 

  87. Bojsen-Moller KN, Dirksen C, Jorgensen NB, Jacobsen SH, Hansen DL, Worm D, et al. Increased hepatic insulin clearance after Roux-en-Y gastric bypass. J Clin Endocrinol Metab. 2013;98(6):E1066–71. doi:10.1210/jc.2013-1286.

    Article  PubMed  Google Scholar 

  88. Ferrannini E, Mingrone G. Impact of different bariatric surgical procedures on insulin action and beta-cell function in type 2 diabetes. Diabetes Care. 2009;32(3):514–20. doi:10.2337/dc08-1762.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Campos JM, Lins DC, Silva LB, Araujo-Junior JG, Zeve JL, Ferraz AA. Metabolic surgery, weight regain and diabetes re-emergence. Arquivos Brasileiros De Cirurgia Digestiva : ABCD = Braz Arch Dig Surg. 2013;26(1):57–62.

    Article  Google Scholar 

  90. DiGiorgi M, Rosen DJ, Choi JJ, Milone L, Schrope B, Olivero-Rivera L, et al. Re-emergence of diabetes after gastric bypass in patients with mid- to long-term follow-up. Sur Obesity Relat Dis : Off J Am Soc Bariatric Surg. 2010;6(3):249–53. doi:10.1016/j.soard.2009.09.019.

    Article  Google Scholar 

  91. Coffin S, Konduru C, Schwarcz M, Frishman W. Surgical approaches for the prevention and treatment of type 2 diabetes mellitus. Cardiol Rev. 2009;17(6):275–9. doi:10.1097/CRD.0b013e3181bc23d1.

    Article  PubMed  Google Scholar 

  92. Varela JE. Bariatric surgery: a cure for diabetes? Curr Opin Clin Nutr Metab Care. 2011;14(4):396–401. doi:10.1097/MCO.0b013e3283468e50.

    Article  PubMed  Google Scholar 

  93. Huang CK, Shabbir A, Lo CH, Tai CM, Chen YS, Houng JY. Laparoscopic Roux-en-Y gastric bypass for the treatment of type II diabetes mellitus in Chinese patients with body mass index of 25-35. Obes Surg. 2011;21(9):1344–9. doi:10.1007/s11695-011-0408-z.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Lee WJ, Hur KY, Lakadawala M, Kasama K, Wong SK, Lee YC. Gastrointestinal metabolic surgery for the treatment of diabetic patients: a multi-institutional international study. J Gastrointest Surg. 2012;16(1):45–51. doi:10.1007/s11605-011-1740-2. discussion -2.

    Article  PubMed  Google Scholar 

  95. Aminian A, Brethauer SA, Kashyap SR, Kirwan JP, Schauer PR. DiaRem score: external validation. Lancet Diabetes Endocrinol. 2014;2(1):12–3. doi:10.1016/S2213-8587(13)70202-X.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank the thousands of bariatric patients that have participated in various clinical studies.

Compliance with Ethics Guidelines

Conflict of Interest

George Argyropoulos declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Argyropoulos.

Additional information

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyropoulos, G. Bariatric Surgery: Prevalence, Predictors, and Mechanisms of Diabetes Remission. Curr Diab Rep 15, 15 (2015). https://doi.org/10.1007/s11892-015-0590-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0590-9

Keywords

Navigation