Skip to main content

Advertisement

Log in

Insights into the Genetic Architecture of Diabetic Nephropathy

  • Microvascular Complications—Nephropathy (B Roshan, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a devastating complication of type 1 and type 2 diabetes and leads to increased morbidity and premature mortality. Susceptibility to DN has an inherent genetic basis as evidenced by familial aggregation and ethnic-specific prevalence rates. Progress in identifying the underlying genetic architecture has been arduous with the realization that a single locus of large effect does not exist, unlike in predisposition to non-diabetic nephropathy in individuals with African ancestry. Numerous risk variants have been identified, each with a nominal effect, and they collectively contribute to disease. These results have identified loci targeting novel pathways for disease susceptibility. With continued technological advances and development of new analytic methods, additional genetic variants and mechanisms (e.g., epigenetic variation) will be identified and help to elucidate the pathogenesis of DN. These advances will lead to early detection and development of novel therapeutic strategies to decrease the incidence of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance•• Of major importance

  1. Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 77(1):57–64.

  2. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.

    Article  PubMed  CAS  Google Scholar 

  3. Buckalew VM, Jr., Freedman BI. Effects of race on albuminuria and risk of cardiovascular and kidney disease. Expert Rev Cardiovasc Ther.9(2):245–9.

  4. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989;320(18):1161–5.

    Article  PubMed  CAS  Google Scholar 

  5. Freedman BI, Spray BJ, Tuttle AB, Buckalew Jr VM. The familial risk of end-stage renal disease in African Americans. Am J Kidney Dis. 1993;21(4):387–93.

    PubMed  CAS  Google Scholar 

  6. Freedman BI, Volkova NV, Satko SG, Krisher J, Jurkovitz C, Soucie JM, et al. Population-based screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol. 2005;25(6):529–35.

    Article  PubMed  Google Scholar 

  7. Quinn M, Angelico MC, Warram JH, Krolewski AS. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia. 1996;39(8):940–5.

    Article  PubMed  CAS  Google Scholar 

  8. Spray BJ, Atassi NG, Tuttle AB, Freedman BI. Familial risk, age at onset, and cause of end-stage renal disease in white Americans. J Am Soc Nephrol. 1995;5(10):1806–10.

    PubMed  CAS  Google Scholar 

  9. O'Dea DF, Murphy SW, Hefferton D, Parfrey PS. Higher risk for renal failure in first-degree relatives of white patients with end-stage renal disease: a population-based study. Am J Kidney Dis. 1998;32(5):794–801.

    Article  PubMed  Google Scholar 

  10. Forsblom CM, Kanninen T, Lehtovirta M, Saloranta C, Groop LC. Heritability of albumin excretion rate in families of patients with Type II diabetes. Diabetologia. 1999;42(11):1359–66.

    Article  PubMed  CAS  Google Scholar 

  11. Ramirez SP, McClellan W, Port FK, Hsu SI. Risk factors for proteinuria in a large, multiracial, Southeast Asian population. J Am Soc Nephrol. 2002;13(7):1907–17.

    Article  PubMed  Google Scholar 

  12. Canani LH, Gerchman F, Gross JL. Familial clustering of diabetic nephropathy in Brazilian type 2 diabetic patients. Diabetes. 1999;48(4):909–13.

    Article  PubMed  CAS  Google Scholar 

  13. Vijay V, Snehalatha C, Shina K, Lalitha S, Ramachandran A. Familial aggregation of diabetic kidney disease in Type 2 diabetes in south India. Diabetes Res Clin Pract. 1999;43(3):167–71.

    Article  PubMed  CAS  Google Scholar 

  14. Maeda S, Osawa N, Hayashi T, Tsukada S, Kobayashi M, Kikkawa R. Genetic variations associated with diabetic nephropathy and type II diabetes in a Japanese population. Kidney Int Suppl. 2007;106:S43–8.

    Article  PubMed  CAS  Google Scholar 

  15. Freedman BI, Soucie JM, McClellan WM. Family history of end-stage renal disease among incident dialysis patients. J Am Soc Nephrol. 1997;8(12):1942–5.

    PubMed  CAS  Google Scholar 

  16. Freedman BI, Tuttle AB, Spray BJ. Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis. 1995;25(5):710–3.

    Article  PubMed  CAS  Google Scholar 

  17. Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1990;33(7):438–43.

    Article  PubMed  CAS  Google Scholar 

  18. Nelson RG, Newman JM, Knowler WC, Sievers ML, Kunzelman CL, Pettitt DJ, et al. Incidence of end-stage renal disease in type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia. 1988;31(10):730–6.

    Article  PubMed  CAS  Google Scholar 

  19. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet. 2002;3(5):391–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ma RC, Tam CH, Wang Y, Luk AO, Hu C, Yang X, et al. Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. JAMA. 2010;304(8):881–9.

    Article  PubMed  CAS  Google Scholar 

  21. Tong Z, Yang Z, Patel S, Chen H, Gibbs D, Yang X, et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc Natl Acad Sci U S A. 2008;105(19):6998–7003.

    Article  PubMed  CAS  Google Scholar 

  22. Liu Y, Burdon KP, Langefeld CD, Beck SR, Wagenknecht LE, Rich SS, et al. T-786 C polymorphism of the endothelial nitric oxide synthase gene is associated with albuminuria in the diabetes heart study. J Am Soc Nephrol. 2005;16(4):1085–90.

    Article  PubMed  CAS  Google Scholar 

  23. Nagase S, Suzuki H, Wang Y, Kikuchi S, Hirayama A, Ueda A, et al. Association of ecNOS gene polymorphisms with end stage renal diseases. Mol Cell Biochem. 2003;244(1–2):113–8.

    Article  PubMed  CAS  Google Scholar 

  24. Noiri E, Satoh H, Taguchi J, Brodsky SV, Nakao A, Ogawa Y, et al. Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension. 2002;40(4):535–40.

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki H, Nagase S, Kikuchi S, Wang Y, Koyama A. Association of a missense Glu298Asp mutation of the endothelial nitric oxide synthase gene with end stage renal disease. Clin Chem. 2000;46(11):1858–60.

    PubMed  CAS  Google Scholar 

  26. •• Wang F, Fang Q, Yu N, Zhao D, Zhang Y, Wang J et al. Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J Renin Angiotensin Aldosterone Syst. 2011; ePub. PMID 21810896. Large-scale meta-analysis of the angiotensin-converting exzyme (ACE) insertion/deletion (I/D) polymorphism showing striking association in Asians with type 2 diabetes.

  27. •• Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI et al. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia.54(3):544–53. Bioinformatic meta-analysis of cited associations associations with DN identifying 24 genetic variants associated with disease.

  28. Imperatore G, Hanson RL, Pettitt DJ, Kobes S, Bennett PH, Knowler WC. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes. 1998;47(5):821–30.

    Article  PubMed  CAS  Google Scholar 

  29. Vardarli I, Baier LJ, Hanson RL, Akkoyun I, Fischer C, Rohmeiss P, et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int. 2002;62(6):2176–83.

    Article  PubMed  CAS  Google Scholar 

  30. Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C, et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes. 2005;54(8):2320–7.

    Article  PubMed  CAS  Google Scholar 

  31. Freedman BI, Hicks PJ, Sale MM, Pierson ED, Langefeld CD, Rich SS, et al. A leucine repeat in the carnosinase gene CNDP1 is associated with diabetic end-stage renal disease in European Americans. Nephrol Dial Transplant. 2007;22(4):1131–5.

    Article  PubMed  CAS  Google Scholar 

  32. •• Ahluwalia TS, Lindholm E, Groop LC. Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes. Diabetologia.54(9):2295–302. Evaluation of positional candidate genes (CNDP1 and CNDP2) implicating common variants in DN.

  33. Knowler WC, Coresh J, Elston RC, Freedman BI, Iyengar SK, Kimmel PL, et al. The Family Investigation of Nephropathy and Diabetes (FIND): design and methods. J Diabetes Complications. 2005;19(1):1–9.

    Article  PubMed  Google Scholar 

  34. Iyengar SK, Abboud HE, Goddard KA, Saad MF, Adler SG, Arar NH, et al. Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes. 2007;56(6):1577–85.

    Article  PubMed  CAS  Google Scholar 

  35. Schelling JR, Abboud HE, Nicholas SB, Pahl MV, Sedor JR, Adler SG, et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: the Family Investigation of Nephropathy and Diabetes (FIND). Diabetes. 2008;57(1):235–43.

    Article  PubMed  CAS  Google Scholar 

  36. Osterholm AM, He B, Pitkaniemi J, Albinsson L, Berg T, Sarti C, et al. Genome-wide scan for type 1 diabetic nephropathy in the Finnish population reveals suggestive linkage to a single locus on chromosome 3q. Kidney Int. 2007;71(2):140–5.

    Article  PubMed  CAS  Google Scholar 

  37. He B, Osterholm AM, Hoverfalt A, Forsblom C, Hjorleifsdottir EE, Nilsson AS, et al. Association of genetic variants at 3q22 with nephropathy in patients with type 1 diabetes mellitus. Am J Hum Genet. 2009;84(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  38. Vionnet N, Tregouet D, Kazeem G, Gut I, Groop PH, Tarnow L, et al. Analysis of 14 candidate genes for diabetic nephropathy on chromosome 3q in European populations: strongest evidence for association with a variant in the promoter region of the adiponectin gene. Diabetes. 2006;55(11):3166–74.

    Article  PubMed  CAS  Google Scholar 

  39. •• Igo RP, Jr., Iyengar SK, Nicholas SB, Goddard KA, Langefeld CD, Hanson RL et al. Genomewide linkage scan for diabetic renal failure and albuminuria: the FIND study. Am J Nephrol.33(5):381–9. Multiethnic linkage study of DN and associated quantitative traits in patients with type 1 and type 2 diabetes stengthens the evidence of linkage for previously identfied regions and implicates novel loci.

  40. Freedman BI, Kopp JB, Langefeld CD, Genovese G, Friedman DJ, Nelson GW, et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol. 2010;21(9):1422–6.

    Article  PubMed  CAS  Google Scholar 

  41. • Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–5. Ethnic-specific variants in APOL1 are associated with nephropathy, harbor signatures of natural selection and are functionally validated.

  42. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet. 2010;128(3):345–50.

    Article  PubMed  CAS  Google Scholar 

  43. •• Rao M, Mottl AK, Cole SA, Umans JG, Freedman BI, Bowden DW et al. Meta-analysis of genome-wide linkage scans for renal function traits. Nephrol Dial Transplant. 2012;27(2):647–56. Utilization of genome scan meta-analysis in DN to sythesize results from surrogate measures.

  44. Wise LH, Lanchbury JS, Lewis CM. Meta-analysis of genome searches. Ann Hum Genet. 1999;63(Pt 3):263–72.

    Article  PubMed  CAS  Google Scholar 

  45. Zintzaras E, Ioannidis JP. HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics. 2005;21(18):3672–3.

    Article  PubMed  CAS  Google Scholar 

  46. Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol. 2005;28(2):123–37.

    Article  PubMed  Google Scholar 

  47. Trikalinos TA, Karvouni A, Zintzaras E, Ylisaukko-oja T, Peltonen L, Jarvela I, et al. A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol Psychiatry. 2006;11(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  48. Zintzaras E, Kitsios G. Identification of chromosomal regions linked to premature myocardial infarction: a meta-analysis of whole-genome searches. J Hum Genet. 2006;51(11):1015–21.

    Article  PubMed  CAS  Google Scholar 

  49. Zintzaras E, Kitsios G, Harrison GA, Laivuori H, Kivinen K, Kere J, et al. Heterogeneity-based genome search meta-analysis for preeclampsia. Hum Genet. 2006;120(3):360–70.

    Article  PubMed  CAS  Google Scholar 

  50. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516–7.

    Article  PubMed  CAS  Google Scholar 

  51. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529.

    Article  PubMed  Google Scholar 

  52. The International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789–96.

    Google Scholar 

  53. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Article  PubMed  CAS  Google Scholar 

  54. Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118(5):1590–605.

    Article  PubMed  CAS  Google Scholar 

  55. Manolio TA, Collins FS. The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med. 2009;60:443–56.

    Article  PubMed  CAS  Google Scholar 

  56. Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes. 2005;54(4):1171–8.

    Article  PubMed  CAS  Google Scholar 

  57. Leak TS, Perlegas PS, Smith SG, Keene KL, Hicks PJ, Langefeld CD, et al. Variants in intron 13 of the ELMO1 gene are associated with diabetic nephropathy in African Americans. Ann Hum Genet. 2009;73(2):152–9.

    Article  PubMed  CAS  Google Scholar 

  58. Pezzolesi MG, Katavetin P, Kure M, Poznik GD, Skupien J, Mychaleckyj JC, et al. Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes. 2009;58(11):2698–702.

    Article  PubMed  CAS  Google Scholar 

  59. Kamiyama M, Kobayashi M, Araki S, Iida A, Tsunoda T, Kawai K, et al. Polymorphisms in the 3' UTR in the neurocalcin delta gene affect mRNA stability, and confer susceptibility to diabetic nephropathy. Hum Genet. 2007;122(3–4):397–407.

    Article  PubMed  CAS  Google Scholar 

  60. Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI, Bostrom MA, et al. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet. 2010;6(2):e1000842.

    Article  PubMed  Google Scholar 

  61. Tang SC, Leung VT, Chan LY, Wong SS, Chu DW, Leung JC, et al. The acetyl-coenzyme A carboxylase beta (ACACB) gene is associated with nephropathy in Chinese patients with type 2 diabetes. Nephrol Dial Transplant. 2010;25(12):3931–4.

    Article  PubMed  CAS  Google Scholar 

  62. Hanson RL, Craig DW, Millis MP, Yeatts KA, Kobes S, Pearson JV, et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes. 2007;56(4):975–83.

    Article  PubMed  CAS  Google Scholar 

  63. Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58(6):1403–10.

    Article  PubMed  CAS  Google Scholar 

  64. Freedman BI, Langefeld CD, Lu L, Divers J, Comeau ME, Kopp JB, et al. Differential effects of MYH9 and APOL1 risk variants on FRMD3 Association with Diabetic ESRD in African Americans. PLoS Genet. 2011;7(6):e1002150.

    Article  PubMed  CAS  Google Scholar 

  65. •• McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN et al. A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int.79(5):563–72. The first GWAS for DN in the African American population.

  66. Gitter J, Langefeld CD, Rich SS, Pedley CF, Bowden DW, Freedman BI. Prevalence of nephropathy in black patients with type 2 diabetes mellitus. Am J Nephrol. 2002;22(1):35–41.

    Article  PubMed  Google Scholar 

  67. Smith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ, Waliszewska A, et al. A high-density admixture map for disease gene discovery in African Americans. Am J Hum Genet. 2004;74(5):1001–13.

    Article  PubMed  CAS  Google Scholar 

  68. Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008;40(10):1185–92.

    Article  PubMed  CAS  Google Scholar 

  69. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40(10):1175–84.

    Article  PubMed  CAS  Google Scholar 

  70. Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;22(11):2129–37.

    Article  PubMed  CAS  Google Scholar 

  71. Pattaro C, Aulchenko YS, Isaacs A, Vitart V, Hayward C, Franklin CS, et al. Genome-wide linkage analysis of serum creatinine in three isolated European populations. Kidney Int. 2009;76(3):297–306.

    Article  PubMed  CAS  Google Scholar 

  72. O'Seaghdha CM, Parekh RS, Hwang SJ, Li M, Kottgen A, Coresh J, et al. The MYH9/APOL1 region and chronic kidney disease in European-Americans. Hum Mol Genet. 2011;20(12):2450–6.

    Article  PubMed  Google Scholar 

  73. Cooke JN, Bostrom MA, Hicks PJ, Ng MC, Hellwege JN, Comeau ME et al. Polymorphisms in MYH9 are associated with diabetic nephropathy in European Americans. Nephrol Dial Transplant. 2012;27(4):1505–11

    Google Scholar 

  74. Friedman DJ, Kozlitina J, Genovese G, Jog P, Pollak MR. Population-based risk assessment of APOL1 on renal disease. J Am Soc Nephrol. 2011;22(11):2098–105.

    Article  PubMed  CAS  Google Scholar 

  75. Freedman BI, Langefeld CD, Turner J, Nunez M, High KP, Spainhour M et al. APOL1 associations with mild kidney disease in African American first-degree relatives of patients with non-diabetic ESRD. Kidney International. 2012, in press.

  76. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  PubMed  CAS  Google Scholar 

  77. McClellan J, King MC. Genetic heterogeneity in human disease. Cell. 2010;141(2):210–7.

    Article  PubMed  CAS  Google Scholar 

  78. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–62.

    Article  PubMed  CAS  Google Scholar 

  79. Dwivedi RS, Herman JG, McCaffrey TA, Raj DS. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int. 2011;79(1):23–32.

    Article  PubMed  Google Scholar 

  80. •• Sapienza C, Lee J, Powell J, Erinle O, Yafai F, Reichert J et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics. 2011;6(1):20–8. Early studies of DNA methylation profiling in DN demonstrating utility of approach.

Download references

Disclosure

Conflicts of interest: N.D. Palmer: none; B.I. Freedman: has received grant support from NIDDK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholette D. Palmer or Barry I. Freedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, N.D., Freedman, B.I. Insights into the Genetic Architecture of Diabetic Nephropathy. Curr Diab Rep 12, 423–431 (2012). https://doi.org/10.1007/s11892-012-0279-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0279-2

Keywords

Navigation