Skip to main content

Advertisement

Log in

Lipids versus glucose in inflammation and the pathogenesis of macrovascular disease in diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 and type 2 diabetes both accelerate cardiovascular disease, yet the triggers are likely different for the two types of diabetes. Results from large-scale clinical trials suggest that intense blood glucose control can reduce cardiovascular events many years later in patients with type 1 diabetes. In type 2 diabetes, mechanisms related to insulin resistance and obesity may be more prominent in promoting atherosclerosis. In this article, we discuss the potential effects of hyperglycemia and diabetes-induced lipid abnormalities on atherosclerosis, particularly focusing on advanced stages of atherosclerosis and evidence from mouse models. In addition, we discuss new research findings in monocyte/macrophage biology that may present intriguing new areas of research related to diabetes and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Ruderman NB, Haudenschild C: Diabetes as an atherogenic factor. Prog Cardiovasc Dis 1984, 26:373–412.

    Article  PubMed  CAS  Google Scholar 

  2. Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE: Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ Res 2007, 100:769–781.

    Article  PubMed  CAS  Google Scholar 

  3. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group [no authors listed]. N Engl J Med 1993, 329:977–986.

    Article  Google Scholar 

  4. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group [no authors listed]. N Engl J Med 2005, 353:2643–2653.

    Article  Google Scholar 

  5. McGarry JD: Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002, 51:7–18.

    Article  PubMed  CAS  Google Scholar 

  6. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. The ADVANCE Collaborative Group [no authors listed]. N Engl J Med 2008, 358:2560–2572.

    Article  Google Scholar 

  7. Effects of intensive glucose lowering in type 2 diabetes. The Action to Control Cardiovascular Risk in Diabetes Study Group [no authors listed]. N Engl J Med 2008, 358:2545–2559.

    Article  Google Scholar 

  8. Johansson F, Kramer F, Barnhart S, et al.: Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proc Natl Acad Sci U S A 2008, 105:2082–2087.

    Article  PubMed  CAS  Google Scholar 

  9. Rosenfeld ME, Averill MM, Bennett BJ, Schwartz SM: Progression and disruption of advanced atherosclerotic plaques in murine models. Curr Drug Targets 2008, 9:210–216.

    Article  PubMed  CAS  Google Scholar 

  10. Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol 2006, 47(8 Suppl): C13–C18.

    Article  PubMed  CAS  Google Scholar 

  11. Gerrity RG, Natarajan R, Nadler JL, Kimsey T: Diabetes-induced accelerated atherosclerosis in swine. Diabetes 2001, 50:1654–1665.

    Article  PubMed  CAS  Google Scholar 

  12. Renard CB, Kramer F, Johansson F, et al.: Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J Clin Invest 2004, 114:659–668.

    PubMed  CAS  Google Scholar 

  13. Aronson D: Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol 2008, 45:1–16.

    Article  PubMed  Google Scholar 

  14. Vikramadithyan RK, Hu Y, Noh HL, et al.: Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J Clin Invest 2005, 115:2434–2443.

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura Y, Horii Y, Nishino T, et al.: Immunohistochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus. Am J Pathol 1993, 143:1649–1656.

    PubMed  CAS  Google Scholar 

  16. Kalousova M, Skrha J, Zima T: Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res 2002, 51:597–604.

    PubMed  CAS  Google Scholar 

  17. Shanmugam N, Figarola JL, Li Y, et al.: Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 2008, 57:879–888.

    Article  PubMed  CAS  Google Scholar 

  18. Soro-Paavonen A, Watson AM, Li J, et al.: RAGE deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 2008, 57:2461–2469.

    Article  PubMed  CAS  Google Scholar 

  19. Harja E, Bu DX, Hudson BI, et al.: Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J Clin Invest 2008, 118:183–194.

    Article  PubMed  CAS  Google Scholar 

  20. Bucciarelli LG, Wendt T, Qu W, et al.: RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 2002, 106:2827–2835.

    Article  PubMed  CAS  Google Scholar 

  21. Das Evcimen N, King GL: The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007, 55:498–510.

    Article  PubMed  Google Scholar 

  22. Dasu MR, Devaraj S, Ling Z, et al.: High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 2008, 57:3090–3098.

    Article  PubMed  Google Scholar 

  23. Newsholme P, Haber EP, Hirabara SM, et al.: Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 2007, 583:9–24.

    Article  PubMed  CAS  Google Scholar 

  24. Pennathur S, Wagner JD, Leeuwenburgh C, et al.: A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J Clin Invest 2001, 107:853–860.

    Article  PubMed  CAS  Google Scholar 

  25. Averill MM, Bennett BJ, Rattazzi M, et al.: Neither antioxidants nor genistein inhibit the progression of established atherosclerotic lesions in older apoE deficient mice. Atherosclerosis 2008 Jul 1 (Epub ahead of print).

  26. Nakagami H, Kaneda Y, Ogihara T, Morishita R: Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr Diab Rev 2005, 1:59–63.

    Article  CAS  Google Scholar 

  27. Piga R, Naito Y, Kokura S, et al.: Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis 2007, 193:328–334.

    Article  PubMed  CAS  Google Scholar 

  28. Watada H, Azuma K, Kawamori R: Glucose fluctuation on the progression of diabetic macroangiopathy: new findings from monocyte adhesion to endothelial cells. Diabetes Res Clin Pract 2007, 77:S58–S61.

    Article  PubMed  CAS  Google Scholar 

  29. Devaraj S, Glaser N, Griffen S, et al.: Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 2006, 55:774–779.

    Article  PubMed  CAS  Google Scholar 

  30. Devaraj S, Dasu MR, Rockwood J, et al.: Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 2008, 93:578–583.

    Article  PubMed  CAS  Google Scholar 

  31. Mazzone T, Chait A, Plutzky J: Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet 2008, 371:1800–1809.

    Article  PubMed  CAS  Google Scholar 

  32. Gordon S, Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005, 5:953–964.

    Article  PubMed  CAS  Google Scholar 

  33. Swirski FK, Libby P, Aikawa E, et al.: Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007, 117:195–205.

    Article  PubMed  CAS  Google Scholar 

  34. Tacke F, Alvarez D, Kaplan TJ, et al.: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007, 117:185–194.

    Article  PubMed  CAS  Google Scholar 

  35. Patiñ R, Ibarra J, Rodriguez A, et al.: Circulating monocytes in patients with diabetes mellitus, arterial disease, and increased CD14 expression. Am J Cardiol 2000, 85:1288–1291.

    Article  Google Scholar 

  36. Zaliunas R, Slapikas R, Babarskiene R, et al.: The prevalence of the metabolic syndrome components and their combinations in men and women with acute ischemic syndromes. Medicina (Kaunas) 2008, 44:521–528.

    Google Scholar 

  37. Ohman MK, Shen Y, Obimba CI, et al.: Visceral adipose tissue inflammation accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 2008, 117:798–805.

    Article  PubMed  Google Scholar 

  38. Beltowski J, Jamroz-Wisniewska A, Widomska S: Adiponectin and its role in cardiovascular diseases. Cardiovasc Hematol Disord Drug Targets 2008, 8:7–46.

    Article  PubMed  CAS  Google Scholar 

  39. Okamoto Y, Kihara S, Ouchi N, et al.: Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002, 106:2767–2770.

    Article  PubMed  CAS  Google Scholar 

  40. Li CJ, Sun HW, Zhu FL, et al.: Local adiponectin treatment reduces atherosclerotic plaque size in rabbits. J Endocrinol 2007, 193:137–145.

    Article  PubMed  CAS  Google Scholar 

  41. Tsubakio-Yamamoto K, Matsuura F, Koseki M, et al.: Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem Biophys Res Commun 2008, 375:390–394.

    Article  PubMed  CAS  Google Scholar 

  42. Tian L, Luo N, Klein RL, et al.: Adiponectin reduces lipid accumulation in macrophage foam cells. Atherosclerosis 2008 Apr 20 (Epub ahead of print).

  43. Qiao L, Zou C, van der Westhuyzen DR, Shao J: Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes 2008, 57:1824–1833.

    Article  PubMed  CAS  Google Scholar 

  44. Sheng T, Yang K: Adiponectin and its association with insulin resistance and type 2 diabetes. J Genet Genomics 2008, 35:321–326.

    Article  PubMed  CAS  Google Scholar 

  45. Dubey L, Hesong Z: Role of leptin in atherogenesis. Exp Clin Cardol 2006, 11:269–275.

    CAS  Google Scholar 

  46. Chiba T, Shinozaki S, Nakazawa T, et al.: Leptin deficiency suppresses progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 2008, 196:68–75.

    Article  PubMed  CAS  Google Scholar 

  47. Lumeng CN, Bodzin JL, Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007, 117:175–184.

    Article  PubMed  CAS  Google Scholar 

  48. Suganami T, Tanimoto-Koyama K, Nishida J, et al.: Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007, 27:84–91.

    Article  PubMed  CAS  Google Scholar 

  49. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al.: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007, 447:1116–1120.

    Article  PubMed  CAS  Google Scholar 

  50. Duan SZ, Usher MG, Mortensen RM: Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res 2008, 102:283–294.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin E. Bornfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averill, M.M., Bornfeldt, K.E. Lipids versus glucose in inflammation and the pathogenesis of macrovascular disease in diabetes. Curr Diab Rep 9, 18–25 (2009). https://doi.org/10.1007/s11892-009-0005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-009-0005-x

Keywords

Navigation