Skip to main content

Advertisement

Log in

Early nephropathy in type 1 diabetes: A new perspective on who will and who will not progress

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Impaired renal function and end-stage renal disease (ESRD) affect up to a third of patients with type 1 diabetes. Thus, strategies for early detection and for preventative interventions are of critical importance. A model of diabetic nephropathy was developed in the 1980s that placed paramount importance on the finding of microalbuminuria as an early marker of a committed process of progressive kidney disease in diabetes. However, recent studies have provided evidence that microalbuminuria is a marker of dynamic, rather than fixed, kidney injury. Preliminary studies into early renal function decline, a process measured in early nephropathy using a simple assay for cystatin C to calculate the slope of glomerular filtration rate change over time, suggest that it is a more proximal marker than microalbuminuria of a person’s trajectory toward impaired renal function and ESRD. Therefore, early renal function decline, rather than microalbuminuria, may be considered as the early marker of the committed process underlying progressive diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Krolewski M, Eggers PW, Warram JH: Magnitude of end-stage renal disease in IDDM: a 35-year follow-up study. Kidney Int 1996, 50:2041–2046.

    Article  PubMed  CAS  Google Scholar 

  2. Mogensen CE, Christensen CK: Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 1984, 311:89–93.

    Article  PubMed  CAS  Google Scholar 

  3. Parving HH, Oxenboll B, Svendsen PA, et al.: Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh) 1982, 100:550–555.

    CAS  Google Scholar 

  4. Viberti GC, Jarrett RJ, Keen H: Microalbuminuria as prediction of nephropathy in diabetics. Lancet 1982, 2:611.

    Article  PubMed  CAS  Google Scholar 

  5. Caramori ML, Fioretto P, Mauer M: The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes 2000, 49:1399–1408.

    Article  PubMed  CAS  Google Scholar 

  6. Giorgino F, Laviola L, Cavallo Perin P, et al.: Factors associated with progression to macroalbuminuria in microalbuminuric type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia 2004, 47:1020–1028.

    Article  PubMed  CAS  Google Scholar 

  7. Mauer M, Drummond K: The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes 2002, 51:1572–1579.

    Article  PubMed  CAS  Google Scholar 

  8. Gerstein HC, Mann JF, Yi Q, et al.: Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001, 286:421–426.

    Article  PubMed  CAS  Google Scholar 

  9. Dinneen SF, Gerstein HC: The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 1997, 157:1413–1418.

    Article  PubMed  CAS  Google Scholar 

  10. Agewall S, Wikstrand J, Ljungman S, Fagerberg B: Usefulness of microalbuminuria in predicting cardiovascular mortality in treated hypertensive men with and without diabetes mellitus. Risk Factor Intervention Study Group. Am J Cardiol 1997, 80:164–169.

    Article  PubMed  CAS  Google Scholar 

  11. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, et al.: Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation 2004, 110:32–35.

    Article  PubMed  CAS  Google Scholar 

  12. Arnlov J, Evans JC, Meigs JB, et al.: Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation 2005, 112:969–975.

    Article  PubMed  CAS  Google Scholar 

  13. Tabaei BP, Al-Kassab AS, Ilag LL, et al.: Does microalbuminuria predict diabetic nephropathy? Diabetes Care 2001, 24:1560–1566.

    Article  PubMed  CAS  Google Scholar 

  14. Perkins BA, Ficociello LH, Silva KH, et al.: Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003, 348:2285–2293. This long-term observational study provides the novel finding that dispels microalbuminuria as a marker of a committed step toward progressive renal injury in type 1 diabetes. Rather, microalbuminuria frequently regresses, and a set of strong determinants for this process of repair exists.

    Article  PubMed  CAS  Google Scholar 

  15. Araki S, Haneda M, Sugimoto T, et al.: Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes mellitus. Diabetes 2005, 54:2983–2987. By analogy to type 1 diabetes, this long-term observational study of patients with type 2 diabetes conducted in Shiga, Japan, confirms the findings seen in Perkins et al. [14••].

    Article  PubMed  CAS  Google Scholar 

  16. Stockand JD, Sansom SC: Regulation of filtration rate by glomerular mesangial cells in health and diabetic renal disease. Am J Kidney Dis 1997, 29:971–981.

    PubMed  CAS  Google Scholar 

  17. Kitamura M, Fine LG: The concept of glomerular self-defense. Kidney Int 1999, 55:1639–1671.

    Article  PubMed  CAS  Google Scholar 

  18. Raats CJ, Van Den Born J, Berden JH: Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int 2000, 57:385–400.

    Article  PubMed  CAS  Google Scholar 

  19. Oldfield MD, Bach LA, Forbes JM, et al.: Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001, 108:1853–1863.

    Article  PubMed  CAS  Google Scholar 

  20. Mathiesen ER, Hommel E, Giese J, Parving HH: Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ 1991, 303:81–87.

    PubMed  CAS  Google Scholar 

  21. Viberti G, Mogensen CE, Groop LC, Pauls JF: Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA 1994, 271:275–279.

    Article  PubMed  CAS  Google Scholar 

  22. Laffel LM, McGill JB, Gans DJ: The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med 1995, 99:497–504.

    Article  PubMed  CAS  Google Scholar 

  23. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group [no authors listed]. Lancet 1997, 349:1787–1792.

  24. Molitch ME, DeFronzo RA, Franz MJ, et al.: Nephropathy in diabetes. Diabetes Care 2004, 27(ppl 1):S79-S83.

    PubMed  Google Scholar 

  25. Forsblom CM, Groop PH, Ekstrand A, Groop LC: Predictive value of microalbuminuria in patients with insulin-dependent diabetes of long duration. BMJ 1992, 305:1051–1053.

    Article  PubMed  CAS  Google Scholar 

  26. Rudberg S, Persson B, Dahlquist DG: Increased glomerular filtration rate as a predictor of diabetic nephropathyan 8-year prospective study. Kidney Int 1992, 41:822–828.

    PubMed  CAS  Google Scholar 

  27. Ficociello LH, Perkins BA, Silva KH, et al.: Progression from microalbuminuria to proteinuria in individuals with type 1 diabetes treated with angiotensin converting enzyme inhibitors. Diabetes Care 2005, in press.

  28. Warram JH, Scott LJ, Hanna LS, et al.: Progression of microalbuminuria to proteinuria in type 1 diabetes: nonlinear relationship with hyperglycemia. Diabetes 2000, 49:94–100.

    Article  PubMed  CAS  Google Scholar 

  29. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group [no authors listed]. Kidney Int 1995, 47:1703–1720.

  30. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993, 329:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  31. O’Hare P, Bilbous R, Mitchell T, et al.: Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care 2000, 23:1823–1829.

    Article  PubMed  CAS  Google Scholar 

  32. Crepaldi G, Carta Q, Deferrari G, et al.: Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care 1998, 21:104–110.

    Article  PubMed  CAS  Google Scholar 

  33. Jones CA, Krolewski AS, Rogus J, et al.: Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int 2005, 67:1684–1691.

    Article  PubMed  Google Scholar 

  34. Bojestig M, Karlberg BE, Lindstrom T, Nystrom FH: Reduction of ACE activity is insufficient to decrease microalbuminuria in normotensive patients with type 1 diabetes. Diabetes Care 2001, 24:919–924.

    Article  PubMed  CAS  Google Scholar 

  35. Zeller K, Whittaker E, Sullivan L, et al.: Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 1991, 324:78–84.

    Article  PubMed  CAS  Google Scholar 

  36. Biesenbach G, Janko O, Zazgornik J: Similar rate of progression in the predialysis phase in type I and type II diabetes mellitus. Nephrol Dial Transplant 1994, 9:1097–1102.

    PubMed  CAS  Google Scholar 

  37. Ellis D, Lloyd C, Becker DJ, et al.: The changing course of diabetic nephropathy: low-density lipoprotein cholesterol and blood pressure correlate with regression of proteinuria. Am J Kidney Dis 1996, 27:809–818.

    PubMed  CAS  Google Scholar 

  38. Hovind P, Rossing P, Tarnow L, et al.: Progression of diabetic nephropathy. Kidney Int 2001, 59:702–709.

    Article  PubMed  CAS  Google Scholar 

  39. Dahlquist G, Stattin EL, Rudberg S: Urinary albumin excretion rate and glomerular filtration rate in the prediction of diabetic nephropathy; a long-term follow-up study of childhood onset type-1 diabetic patients. Nephrol Dial Transplant 2001, 16:1382–1386.

    Article  PubMed  CAS  Google Scholar 

  40. Amin R, Turner C, van Aken S, et al.: The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: the Oxford Regional Prospective Study. Kidney Int 2005, 68:1740–1749. This large-scale study of subjects with type 1 diabetes followed from diagnosis demonstrates that early in the course of type 1 diabetes renal function declines significantly, despite remaining in the normal range of GFR. This observation supports a hypothesis that a process of early renal function decline begins in early nephropathy.

    Article  PubMed  Google Scholar 

  41. Lindeman RD, Tobin J, Shock NW: Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985, 33:278–285.

    PubMed  CAS  Google Scholar 

  42. Hsu CY, Chertow GM, Curhan GC: Methodological issues in studying the epidemiology of mild to moderate chronic renal insufficiency. Kidney Int 2002, 61:1567–1576.

    Article  PubMed  Google Scholar 

  43. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification [no authors listed]. Am J Kidney Dis 2002, 39(2 suppl 1):S1–S266.

  44. Price CP, Finney H: Developments in the assessment of glomerular filtration rate. Clin Chim Acta 2000, 297:55–66.

    Article  PubMed  CAS  Google Scholar 

  45. Massey D: Commentary: clinical diagnostic use of cystatin C. J Clin Lab Anal 2004, 18:55–60.

    Article  PubMed  CAS  Google Scholar 

  46. Newman DJ: Cystatin C. Ann Clin Biochem 2002, 39(Pt 2):89–104.

    Article  PubMed  CAS  Google Scholar 

  47. Mussap M, Ruzzante N, Varagnolo M, Plebani M: Quantitative automated particle-enhanced immunonephelometric assay for the routinary measurement of human cystatin C. Clin Chem Lab Med 1998, 36:859–865.

    Article  PubMed  CAS  Google Scholar 

  48. Tan GD, Lewis AV, James TJ, et al.: Clinical usefulness of cystatin C for the estimation of glomerular filtration rate in type 1 diabetes: reproducibility and accuracy compared with standard measures and iohexol clearance. Diabetes Care 2002, 25:2004–2009.

    Article  PubMed  CAS  Google Scholar 

  49. Shlipak MG, Sarnak MJ, Katz R, et al.: Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 2005, 352:2049–2060.

    Article  PubMed  CAS  Google Scholar 

  50. Perkins BA, Nelson RG, Ostrander BE, et al.: Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. J Am Soc Nephrol 2005, 16:1404–1412. This 4-year observational study of cystatin C as a marker of renal function provides a major technical advance for the study of GFR change over time in the diabetes population in which hyperfiltration is very common. Unlike gold-standard inert substance clearance methods such as iothalamate, which are burdensome for large-scale studies, and unlike creatinine-based estimates, which are inaccurate unless the GFR is low, cystatin C in this study is demonstrated to accurately identify early renal function decline in patients with diabetes.

    Article  PubMed  Google Scholar 

  51. Perkins BA, Ficociello LH, Palecek B, et al.: Renal function decline occurs soon after the onset of microalbuminuria in type 1 diabetes [abstract]. Diabetes 2003, 52(ppl 1):A189.

    Google Scholar 

  52. Placha G, Canani LH, Warram JH, Krolewski AS: Evidence for different susceptibility genes for proteinuria and ESRD in type 2 diabetes. Adv Chronic Kidney Dis 2005, 12:155–169.

    Article  PubMed  Google Scholar 

  53. Meier M, Kaiser T, Herrmann A, et al.: Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. J Diabetes Complications 2005, 19:223–232.

    Article  PubMed  Google Scholar 

  54. Perkins BA, Ficociello LH, Warram JH, Krolewski AS: Progressive microalbuminuria occurs in parallel with renal function decline in type 1 diabetes without evidence for a causal relationship [abstract]. Diabetes 2005, 54(ppl 1):A549.

    Google Scholar 

  55. Niewczas M, Wolkow P, Lipinski B, et al.: Inflammation and renal function decline in patients with type 1 diabetes mellitus and microalbuminuria [abstract]. J Am Soc Nephrol 2005, in press.

  56. Scott LJ, Warram JH, Hanna LS, et al.: A nonlinear effect of hyperglycemia and current cigarette smoking are major determinants of the onset of microalbuminuria in type 1 diabetes. Diabetes 2001, 50:2842–2849.

    Article  PubMed  CAS  Google Scholar 

  57. Ritz E: Albuminuria and vascular damage—the vicious twins. N Engl J Med 2003, 348:2349–2352.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, B.A., Krolewski, A.S. Early nephropathy in type 1 diabetes: A new perspective on who will and who will not progress. Curr Diab Rep 5, 455–463 (2005). https://doi.org/10.1007/s11892-005-0055-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-005-0055-7

Keywords

Navigation