Skip to main content
Log in

Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The pace of identifying cardiomyopathy-associated mutations and advances in our understanding of sarcomere function that underlies many cardiomyopathies has been remarkable. Here, we aim to synthesize how these advances have led to the promising new treatments that are being developed to treat cardiomyopathies.

Recent Findings

The genomics era has identified and validated many genetic causes of hypertrophic and dilated cardiomyopathies. Recent advances in our mechanistic understanding of sarcomere pathophysiology include high-resolution molecular models of sarcomere components and the identification of the myosin super-relaxed state. The advances in our understanding of sarcomere function have yielded several therapeutic agents that are now in development and clinical use to correct contractile dysfunction–mediated cardiomyopathy.

Summary

New genes linked to cardiomyopathy include targets with limited clinical evidence and require additional investigation. Large portions of cardiomyopathy with family history remain genetically undiagnosed and may be due to polygenic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2022;79(4):390–414. https://doi.org/10.1016/j.jacc.2021.11.021.

    Article  PubMed  Google Scholar 

  2. Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Bohm M, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850–8. https://doi.org/10.1093/eurheartj/ehv727.

    Article  PubMed  Google Scholar 

  3. McNally EM, Barefield DY, Puckelwartz MJ. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab. 2015;21(2):174–82. https://doi.org/10.1016/j.cmet.2015.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20(1):1–8. https://doi.org/10.1136/hrt.20.1.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braunwald E, Lambrew CT, Rockoff SD, Ross J Jr, Morrow AG. Idiopathic hypertrophic subaortic stenosis. I A description of the disease based upon an analysis of 64 patients. Circulation. 1964;30(SUPPL 4):3–119. https://doi.org/10.1161/01.cir.29.5s4.iv-3.

    Article  Google Scholar 

  6. Codd MB, Sugrue DD, Gersh BJ, Melton LJ III. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation. 1989;80(3):564–72. https://doi.org/10.1161/01.cir.80.3.564.

    Article  CAS  PubMed  Google Scholar 

  7. Pourebrahim K, Marian JG, Tan Y, Chang JT, Marian AJ. A combinatorial oligogenic basis for the phenotypic plasticity between late-onset dilated and arrhythmogenic cardiomyopathy in a single family. J Cardiovasc Aging. 2021;1. https://doi.org/10.20517/jca.2021.15.

  8. Chen K, Rao M, Guo G, Chen X, Chen L, Song J. Sarcomere variants in arrhythmogenic cardiomyopathy: pathogenic factor or bystander? Gene. 2019;687:82–9. https://doi.org/10.1016/j.gene.2018.10.080.

    Article  CAS  PubMed  Google Scholar 

  9. Rivner H, Mitrani RD, Goldberger JJ. Atrial myopathy underlying atrial fibrillation. Arrhythm Electrophysiol Rev. 2020;9(2):61–70. https://doi.org/10.15420/aer.2020.13.

  10. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62(5):999–1006. https://doi.org/10.1016/0092-8674(90)90274-i.

    Article  CAS  PubMed  Google Scholar 

  11. Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):438–40. https://doi.org/10.1038/ng1295-438.

    Article  CAS  PubMed  Google Scholar 

  12. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434–7. https://doi.org/10.1038/ng1295-434.

    Article  CAS  PubMed  Google Scholar 

  13. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77(5):701–12. https://doi.org/10.1016/0092-8674(94)90054-x.

    Article  PubMed  Google Scholar 

  14. Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 1996;13(1):63–9. https://doi.org/10.1038/ng0596-63.

    Article  CAS  PubMed  Google Scholar 

  15. Lorenzini M, Norrish G, Field E, Ochoa JP, Cicerchia M, Akhtar MM, et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers. J Am Coll Cardiol. 2020;76(5):550–9. https://doi.org/10.1016/j.jacc.2020.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ware SM, Wilkinson JD, Tariq M, Schubert JA, Sridhar A, Colan SD, et al. Genetic causes of cardiomyopathy in children: first results from the Pediatric Cardiomyopathy Genes Study. J Am Heart Assoc. 2021;10(9):e017731. https://doi.org/10.1161/JAHA.120.017731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation. 2020;141(5):387–98. https://doi.org/10.1161/CIRCULATIONAHA.119.037661. This study used cardiomyopathy panel screening on 2538 DCM patients and 912 healthy volunteers and myriads of individuals in a data repository to assess rare variants in 56 commonly tested cardiomyopathy-associated genes. Mutations in TTN, DSP, MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1, and VCL genes were highly linked with DCM. Other genes may still play a role; they need to be more thoroughly studied, and the authors emphasized the minimal diagnostic utility of other genes in DCM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation. 2018;138(14):1387–98. https://doi.org/10.1161/CIRCULATIONAHA.117.033200.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47. https://doi.org/10.1038/nrcardio.2013.105.

    Article  CAS  PubMed  Google Scholar 

  20. • Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med. 2021;384(2):105–16. https://doi.org/10.1056/NEJMoa2025797. Findings on this study suggest that the novel myosin activator omecamtiv mecarbil treatment reduced heart failure–associated outcomes. While omecamtiv mecarbil ultimately was not FDA approved, this study provides support for the concept of targeting myosin function to treat heart failure.

    Article  CAS  PubMed  Google Scholar 

  21. •• Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396(10253):759–69. https://doi.org/10.1016/S0140-6736(20)31792-X. Mavacamten is a first-in-class myosin inhibitor for the treatment of HCM. This article reports the results of its phase 3 trial where mavacamten was found to increase exercise capacity, reduce left ventricular outflow tract gradients, and improve heart function in patients with obstructive hypertrophic cardiomyopathy. This is a landmark study for treating cardiac function with myosin modulators.

    Article  CAS  PubMed  Google Scholar 

  22. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70. https://doi.org/10.1161/CIRCRESAHA.117.311059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol. 2020;17(5):286–97. https://doi.org/10.1038/s41569-019-0284-0.

    Article  PubMed  Google Scholar 

  24. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation. 2016;134(23):e579–646. https://doi.org/10.1161/CIR.0000000000000455.

    Article  PubMed  Google Scholar 

  25. Mestroni L, Brun F, Spezzacatene A, Sinagra G, Taylor MR. Genetic causes of dilated cardiomyopathy. Prog Pediatr Cardiol. 2014;37(1–2):13–8. https://doi.org/10.1016/j.ppedcard.2014.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  26. • Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019;12(2):e002460. https://doi.org/10.1161/CIRCGEN.119.002460. This study investigates the clinical validity of genes that are associated with the development of HCM. Of 33 HCM-causing genes, eight were considered definitive and three had moderate evidence linking them to HCM. The authors urge caution on using mutations in these genes to guide clinical decision-making until further inquiry into the remaining 20 genes provides definitive links with disease.

  27. Dellefave-Castillo LM, Cirino AL, Callis TE, Esplin ED, Garcia J, Hatchell KE, et al. Assessment of the diagnostic yield of combined cardiomyopathy and arrhythmia genetic testing. JAMA Cardiol. 2022;7(9):966–74. https://doi.org/10.1001/jamacardio.2022.2455.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16(4):379–82. https://doi.org/10.1038/ng0897-379.

    Article  CAS  PubMed  Google Scholar 

  29. Huang W, Liang J, Yuan CC, Kazmierczak K, Zhou Z, Morales A, et al. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain. FEBS J. 2015;282(12):2379–93. https://doi.org/10.1111/febs.13286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee W, Hwang TH, Kimura A, Park SW, Satoh M, Nishi H, et al. Different expressivity of a ventricular essential myosin light chain gene Ala57Gly mutation in familial hypertrophic cardiomyopathy. Am Heart J. 2001;141(2):184–9. https://doi.org/10.1067/mhj.2001.112487.

    Article  CAS  PubMed  Google Scholar 

  31. Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro RJ, et al. A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol. 2001;33(10):1815–28. https://doi.org/10.1006/jmcc.2001.1445.

    Article  CAS  PubMed  Google Scholar 

  32. Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999;103(10):R39-43. https://doi.org/10.1172/JCI6460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Harper AR, Goel A, Grace C, Thomson KL, Petersen SE, Xu X, et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet. 2021;53(2):135–42. https://doi.org/10.1038/s41588-020-00764-0. This article reports a genome-wide association study of 2780 HCM cases and 47,486 control that identified 12 loci associated with increased susceptibility to HCM. They found that common single-nucleotide polymorphisms in these regions correlated with increased risk of developing HCM. This provides support for the concept that a portion of HCM has polygenic modifiers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, et al. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet. 2009;41(2):187–91. https://doi.org/10.1038/ng.309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Viswanathan SK, Puckelwartz MJ, Mehta A, Ramachandra CJA, Jagadeesan A, Fritsche-Danielson R, et al. Association of cardiomyopathy with MYBPC3 D389V and MYBPC3Delta25bp intronic deletion in South Asian descendants. JAMA Cardiol. 2018;3(6):481–8. https://doi.org/10.1001/jamacardio.2018.0618.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kuster DW, Govindan S, Springer TI, Martin JL, Finley NL, Sadayappan S. A hypertrophic cardiomyopathy-associated MYBPC3 mutation common in populations of South Asian descent causes contractile dysfunction. J Biol Chem. 2015;290(9):5855–67. https://doi.org/10.1074/jbc.M114.607911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weisberg A, Winegrad S. Alteration of myosin cross bridges by phosphorylation of myosin-binding protein C in cardiac muscle. Proc Natl Acad Sci U S A. 1996;93(17):8999–9003. https://doi.org/10.1073/pnas.93.17.8999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28. https://doi.org/10.1056/NEJMoa1110186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16(8):601–8. https://doi.org/10.1038/gim.2013.204.

    Article  CAS  PubMed  Google Scholar 

  40. Gacita AM, Fullenkamp DE, Ohiri J, Pottinger T, Puckelwartz MJ, Nobrega MA, et al. Genetic variation in enhancers modifies cardiomyopathy gene expression and progression. Circulation. 2021;143(13):1302–16. https://doi.org/10.1161/CIRCULATIONAHA.120.050432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. • Puckelwartz MJ, Pesce LL, Dellefave-Castillo LM, Wheeler MT, Pottinger TD, Robinson AC, et al. Genomic context differs between human dilated cardiomyopathy and hypertrophic cardiomyopathy. J Am Heart Assoc. 2021;10(7):e019944. https://doi.org/10.1161/JAHA.120.019944. This study used whole-genome sequencing on a cohort of patients with HCM or DCM to evaluate the occurrence of non-synonymous single-nucleotide polymorphisms in cardiomyopathy-associated genes. They found that the increasing numbers of these variants correlated with the likelihood of having DCM compared to HCM. The authors emphasize the importance of the genetic landscape that may alter the development of cardiomyopathy.

  42. • Tadros R, Francis C, Xu X, Vermeer AMC, Harper AR, Huurman R, et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet. 2021;53(2):128–34. https://doi.org/10.1038/s41588-020-00762-2. This work reports a genome-wide association study that identifies several loci in HCM and DCM. The loci that were associated with ventricular function showed opposite functional changes in HCM and DCM, supporting the hypothesis that HCM is a hypercontractile disease. The loci were used to create a polygenic risk score that helped explain the genetic basis for patients with variable phenotypes in HCM and DCM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pensa AV, Baman JR, Puckelwartz MJ, Wilcox JE. Genetically based atrial fibrillation: current considerations for diagnosis and management. J Cardiovasc Electrophysiol. 2022;33(8):1944–53. https://doi.org/10.1111/jce.15446.

    Article  PubMed  Google Scholar 

  44. Gudbjartsson DF, Holm H, Sulem P, Masson G, Oddsson A, Magnusson OT, et al. A frameshift deletion in the sarcomere gene MYL4 causes early-onset familial atrial fibrillation. Eur Heart J. 2017;38(1):27–34. https://doi.org/10.1093/eurheartj/ehw379.

    Article  CAS  PubMed  Google Scholar 

  45. Reiser PJ, Portman MA, Ning XH, Schomisch MC. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol. 2001;280(4):H1814–20. https://doi.org/10.1152/ajpheart.2001.280.4.H1814.

    Article  CAS  PubMed  Google Scholar 

  46. Nag S, Trivedi DV, Sarkar SS, Adhikari AS, Sunitha MS, Sutton S, et al. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Mol Biol. 2017;24(6):525–33. https://doi.org/10.1038/nsmb.3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adhikari AS, Kooiker KB, Sarkar SS, Liu C, Bernstein D, Spudich JA, et al. Early-onset hypertrophic cardiomyopathy mutations significantly increase the velocity, force, and actin-activated ATPase activity of human beta-cardiac myosin. Cell Rep. 2016;17(11):2857–64. https://doi.org/10.1016/j.celrep.2016.11.040.

    Article  CAS  PubMed  Google Scholar 

  48. Yousaf M, Khan WA, Shahzad K, Khan HN, Ali B, Hussain M, et al. Genetic association of beta-myosin heavy-chain gene (MYH7) with cardiac dysfunction. Genes (Basel). 2022. https://doi.org/10.3390/genes13091554.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Adhikari AS, Trivedi DV, Sarkar SS, Song D, Kooiker KB, Bernstein D, et al. beta-Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increase enzymatic activity. Nat Commun. 2019;10(1):2685. https://doi.org/10.1038/s41467-019-10555-9. This study evaluated four HCM-causing mutations in b-cardiac myosin. They found that these mutants in the head and neck region of myosin caused release of the myosin heads from their low-energy-associated interacting head motif confirmation. This resulted in hypercontractility and increase ATPase activity and supports the hypothesis that HCM is caused by hypercontractile myosin motors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Toepfer CN, Garfinkel AC, Venturini G, Wakimoto H, Repetti G, Alamo L, et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation. 2020;141(10):828–42. https://doi.org/10.1161/CIRCULATIONAHA.119.042339. This study showed that HCM-causing myosin heavy chain mutations disrupted the interacting head motif and this also reduced the myosin super-relaxed state, ultimately increasing contractile function arrhythmias. It was also demonstrated that small molecule myosin inhibitor mavacamten stabilized the super-relaxed state and mitigated contractile dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McNamara JW, Li A, Dos Remedios CG, Cooke R. The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys Rev. 2015;7(1):5–14. https://doi.org/10.1007/s12551-014-0151-5.

    Article  CAS  PubMed  Google Scholar 

  52. Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG, Seidman CE, et al. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. Elife. 2017. https://doi.org/10.7554/eLife.24634.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hu Z, Taylor DW, Edwards RJ, Taylor KA. Coupling between myosin head conformation and the thick filament backbone structure. J Struct Biol. 2017;200(3):334–42. https://doi.org/10.1016/j.jsb.2017.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. •• Ma W, Henze M, Anderson RL, Gong H, Wong FL, Del Rio CL, et al. The super-relaxed state and length dependent activation in porcine myocardium. Circ Res. 2021;129(6):617–30. https://doi.org/10.1161/CIRCRESAHA.120.318647. This study used X-ray diffraction to evaluate the state of myosin heavy chain heads during length-dependent activation. They found that with stretch, myosin heads were liberated from the super-relaxed state along the thick filament backbone. The myosin inhibitor mavacamten is known to stabilize the super-relaxed state, and this work shows that mavacamten also blunts the stretch activation of myosin heads.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheikh F, Lyon RC, Chen J. Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene. 2015;569(1):14–20. https://doi.org/10.1016/j.gene.2015.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lowey S, Waller GS, Trybus KM. Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature. 1993;365(6445):454–6. https://doi.org/10.1038/365454a0.

    Article  CAS  PubMed  Google Scholar 

  57. Muthu P, Wang L, Yuan CC, Kazmierczak K, Huang W, Hernandez OM, et al. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction. FASEB J. 2011;25(12):4394–405. https://doi.org/10.1096/fj.11-191973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chang AN, Mahajan P, Knapp S, Barton H, Sweeney HL, Kamm KE, et al. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities. Proc Natl Acad Sci U S A. 2016;113(27):E3824–33. https://doi.org/10.1073/pnas.1600633113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Bortoli M, Vio R, Basso C, Calore M, Minervini G, Angelini A, et al. Novel missense variant in MYL2 gene associated with hypertrophic cardiomyopathy showing high incidence of restrictive physiology. Circ Genom Precis Med. 2020;13(2):e002824. https://doi.org/10.1161/CIRCGEN.119.002824.

    Article  PubMed  Google Scholar 

  60. • Yuan CC, Kazmierczak K, Liang J, Ma W, Irving TC, Szczesna-Cordary D. Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: role of the super-relaxed state of myosin. Proc Natl Acad Sci U S A. 2022;119(8). https://doi.org/10.1073/pnas.2110328119. This study analyzed mutations in the ventricular myosin regulatory light chain (MYL2) mutation that lead to cardiomyopathy. The HCM-associated mutation increased Ca2+ sensitivity of isometric force, disrupted the super-relaxed state of myosin, and moved myosin heads off the thick filament backbone. These data support the ability of mutations in myosin’s resident regulatory proteins to work through a similar mechanism as myosin mutations in the development of cardiomyopathy.

  61. Carrier L. Targeting the population for gene therapy with MYBPC3. J Mol Cell Cardiol. 2021;150:101–8. https://doi.org/10.1016/j.yjmcc.2020.10.003.

    Article  CAS  PubMed  Google Scholar 

  62. Yu B, French JA, Carrier L, Jeremy RW, McTaggart DR, Nicholson MR, et al. Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene. J Med Genet. 1998;35(3):205–10. https://doi.org/10.1136/jmg.35.3.205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Marston S, Copeland O, Gehmlich K, Schlossarek S, Carrier L. How do MYBPC3 mutations cause hypertrophic cardiomyopathy? J Muscle Res Cell Motil. 2012;33(1):75–80. https://doi.org/10.1007/s10974-011-9268-3.

    Article  CAS  PubMed  Google Scholar 

  64. Barefield D, Kumar M, Gorham J, Seidman JG, Seidman CE, de Tombe PP, et al. Haploinsufficiency of MYBPC3 exacerbates the development of hypertrophic cardiomyopathy in heterozygous mice. J Mol Cell Cardiol. 2015;79:234–43. https://doi.org/10.1016/j.yjmcc.2014.11.018.

    Article  CAS  PubMed  Google Scholar 

  65. Suay-Corredera C, Pricolo MR, Herrero-Galan E, Velazquez-Carreras D, Sanchez-Ortiz D, Garcia-Giustiniani D, et al. Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy. J Biol Chem. 2021;297(1):100854. https://doi.org/10.1016/j.jbc.2021.100854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Leary TS, Snyder J, Sadayappan S, Day SM, Previs MJ. MYBPC3 truncation mutations enhance actomyosin contractile mechanics in human hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2019;127:165–73. https://doi.org/10.1016/j.yjmcc.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  67. Bahrudin U, Morisaki H, Morisaki T, Ninomiya H, Higaki K, Nanba E, et al. Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy. J Mol Biol. 2008;384(4):896–907. https://doi.org/10.1016/j.jmb.2008.09.070.

    Article  CAS  PubMed  Google Scholar 

  68. • Helms AS, Tang VT, O’Leary TS, Friedline S, Wauchope M, Arora A, et al. Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy. JCI Insight. 2020;5(2). https://doi.org/10.1172/jci.insight.133782. This study evaluated cMyBP-C levels in iPSC-CMs with MYBPC3-truncating mutations. It showed a compensation in MYBPC3 protein levels, with reduced rates of both synthesis and degradation. The authors conclude with the potential to regulate the degradation rate of cMyBP-C in cases with reduced levels of cMyBP-C.

  69. Helms AS, Thompson AD, Glazier AA, Hafeez N, Kabani S, Rodriguez J, et al. Spatial and functional distribution of MYBPC3 pathogenic variants and clinical outcomes in patients with hypertrophic cardiomyopathy. Circ Genom Precis Med. 2020;13(5):396–405. https://doi.org/10.1161/CIRCGEN.120.002929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McNamara JW, Li A, Lal S, Bos JM, Harris SP, van der Velden J, et al. MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS ONE. 2017;12(6):e0180064. https://doi.org/10.1371/journal.pone.0180064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Toepfer CN, Wakimoto H, Garfinkel AC, McDonough B, Liao D, Jiang J, et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci Transl Med. 2019;11(476). https://doi.org/10.1126/scitranslmed.aat1199. This study found that reduced levels of cMyBP-C lead to a reduced percentage of myosin heads in the super-relaxed state and an increase in contractility. DCM-causing missense mutations in MYBPC3 had the opposite effect. Importantly, the myosin inhibitor drug mavacamten stabilized the super-relaxed state and returned contractile function to normal levels. This provides evidence that HCM-causing mutations in MYBPC3 can be treated effectively with mavacamten.

  72. Da’as SI, Fakhro K, Thanassoulas A, Krishnamoorthy N, Saleh A, Calver BL, et al. Hypertrophic cardiomyopathy-linked variants of cardiac myosin-binding protein C3 display altered molecular properties and actin interaction. Biochem J. 2018;475(24):3933–48. https://doi.org/10.1042/BCJ20180685.

    Article  PubMed  Google Scholar 

  73. Barefield D, Sadayappan S. Phosphorylation and function of cardiac myosin binding protein-C in health and disease. J Mol Cell Cardiol. 2010;48(5):866–75. https://doi.org/10.1016/j.yjmcc.2009.11.014.

    Article  CAS  PubMed  Google Scholar 

  74. Karibe A, Tobacman LS, Strand J, Butters C, Back N, Bachinski LL, et al. Hypertrophic cardiomyopathy caused by a novel alpha-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation. 2001;103(1):65–71. https://doi.org/10.1161/01.cir.103.1.65.

    Article  CAS  PubMed  Google Scholar 

  75. Shafaattalab S, Li AY, Gunawan MG, Kim B, Jayousi F, Maaref Y, et al. Mechanisms of arrhythmogenicity of hypertrophic cardiomyopathy-associated troponin T (TNNT2) variant I79N. Front Cell Dev Biol. 2021;9:787581. https://doi.org/10.3389/fcell.2021.787581.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gomes AV, Harada K, Potter JD. A mutation in the N-terminus of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca(2+)-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J Mol Cell Cardiol. 2005;39(5):754–65. https://doi.org/10.1016/j.yjmcc.2005.05.013.

    Article  CAS  PubMed  Google Scholar 

  77. Abdullah S, Lynn ML, McConnell MT, Klass MM, Baldo AP, Schwartz SD, et al. FRET-based analysis of the cardiac troponin T linker region reveals the structural basis of the hypertrophic cardiomyopathy-causing Delta160E mutation. J Biol Chem. 2019;294(40):14634–47. https://doi.org/10.1074/jbc.RA118.005098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McConnell M, Tal Grinspan L, Williams MR, Lynn ML, Schwartz BA, Fass OZ, et al. Clinically divergent mutation effects on the structure and function of the human cardiac tropomyosin overlap. Biochemistry. 2017;56(26):3403–13. https://doi.org/10.1021/acs.biochem.7b00266.

    Article  CAS  PubMed  Google Scholar 

  79. Bai F, Caster HM, Dawson JF, Kawai M. The immediate effect of HCM causing actin mutants E99K and A230V on actin-Tm-myosin interaction in thin-filament reconstituted myocardium. J Mol Cell Cardiol. 2015;79:123–32. https://doi.org/10.1016/j.yjmcc.2014.10.014.

    Article  CAS  PubMed  Google Scholar 

  80. • Pioner JM, Vitale G, Gentile F, Scellini B, Piroddi N, Cerbai E, et al. Genotype-driven pathogenesis of atrial fibrillation in hypertrophic cardiomyopathy: the case of different TNNT2 mutations. Front Physiol. 2022;13:864547. https://doi.org/10.3389/fphys.2022.864547. This study analyzed the pathological mechanism between two TNNT2 mutations that differentially cause atrial or ventricular dysfunction. R92Q showed an increase in left atrial dilation but no changes in the E163R mutation. The atria from R92Q mice showed an increased propensity for arrhythmia. The findings of this paper illustrate the importance of assessing atrial function in mutations that cause cardiomyopathy.

  81. Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, et al. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104(4):469–81. https://doi.org/10.1172/JCI6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kruger M, Linke WA. Titin-based mechanical signalling in normal and failing myocardium. J Mol Cell Cardiol. 2009;46(4):490–8. https://doi.org/10.1016/j.yjmcc.2009.01.004.

    Article  CAS  PubMed  Google Scholar 

  83. Granzier HL, Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res. 2004;94(3):284–95. https://doi.org/10.1161/01.RES.0000117769.88862.F8.

    Article  CAS  PubMed  Google Scholar 

  84. Bennett P, Rees M, Gautel M. The axial alignment of titin on the muscle thick filament supports its role as a molecular ruler. J Mol Biol. 2020;432(17):4815–29. https://doi.org/10.1016/j.jmb.2020.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra6. https://doi.org/10.1126/scitranslmed.3010134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McAfee Q, Chen CY, Yang Y, Caporizzo MA, Morley M, Babu A, et al. Truncated titin proteins in dilated cardiomyopathy. Sci Transl Med. 2021;13(618):eabd7287. https://doi.org/10.1126/scitranslmed.abd7287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015;349(6251):982–6. https://doi.org/10.1126/science.aaa5458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tonino P, Kiss B, Strom J, Methawasin M, Smith JE 3rd, Kolb J, et al. The giant protein titin regulates the length of the striated muscle thick filament. Nat Commun. 2017;8(1):1041. https://doi.org/10.1038/s41467-017-01144-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. • Akinrinade O, Helio T, Lekanne Deprez RH, Jongbloed JDH, Boven LG, van den Berg MP, et al. Relevance of titin missense and non-frameshifting insertions/deletions variants in dilated cardiomyopathy. Sci Rep. 2019;9(1):4093. https://doi.org/10.1038/s41598-019-39911-x. This study investigated non-truncating mutations in titin, which are less well understood compared to titin-truncating variants. While they found rare in-frame mutations in titin, they showed that rare variations in these regions were not more abundant in DCM populations compared to control populations. The authors conclude that many of these non-truncating variants should be classified as likely benign.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van der Linde IHM, Hiemstra YL, Bokenkamp R, van Mil AM, Breuning MH, Ruivenkamp C, et al. A Dutch MYH7 founder mutation, p.(Asn1918Lys), is associated with early onset cardiomyopathy and congenital heart defects. Neth Heart J. 2017;25(12):675–81. https://doi.org/10.1007/s12471-017-1037-5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ujfalusi Z, Vera CD, Mijailovich SM, Svicevic M, Yu EC, Kawana M, et al. Dilated cardiomyopathy myosin mutants have reduced force-generating capacity. J Biol Chem. 2018;293(23):9017–29. https://doi.org/10.1074/jbc.RA118.001938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA, et al. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proc Natl Acad Sci U S A. 2006;103(39):14525–30. https://doi.org/10.1073/pnas.0606383103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. • Robinson P, Sparrow AJ, Patel S, Malinowska M, Reilly SN, Zhang YH, et al. Dilated cardiomyopathy mutations in thin-filament regulatory proteins reduce contractility, suppress systolic Ca(2+), and activate NFAT and Akt signaling. Am J Physiol Heart Circ Physiol. 2020;319(2):H306–19. https://doi.org/10.1152/ajpheart.00272.2020. The study analyzed DCM-associated mutations in cardiac troponin-T, troponin-I, and a-tropomyosin. They found a shared mechanisms of reduced calcium release, reduction in SR Ca2+2+ ATPase activity, and increase in sodium-calcium exchanger activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Memo M, Leung MC, Ward DG, dos Remedios C, Morimoto S, Zhang L, et al. Familial dilated cardiomyopathy mutations uncouple troponin I phosphorylation from changes in myofibrillar Ca(2)(+) sensitivity. Cardiovasc Res. 2013;99(1):65–73. https://doi.org/10.1093/cvr/cvt071.

    Article  CAS  PubMed  Google Scholar 

  95. Sewanan LR, Park J, Rynkiewicz MJ, Racca AW, Papoutsidakis N, Schwan J, et al. Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. J Gen Physiol. 2021. https://doi.org/10.1085/jgp.202012640.

    Article  PubMed  PubMed Central  Google Scholar 

  96. • Schwabe FV, Peter EK, Taft MH, Manstein DJ. Assessment of the contribution of a thermodynamic and mechanical destabilization of myosin-binding protein C domain C2 to the pathomechanism of hypertrophic cardiomyopathy-causing double mutation MYBPC3(Delta25bp/D389V). Int J Mol Sci. 2021;22(21). https://doi.org/10.3390/ijms222111949. This study analyzed a recently identified double mutation in MYBPC3 that includes a D389V variant on the highly prevalent delta25bp allele. The findings suggest that the D389V variant may promote the accumulation of misfolded cMyBP-C early in life, followed by a haploinsufficiency later due to the delta25 mutation.

  97. Veltri T, Landim-Vieira M, Parvatiyar MS, Gonzalez-Martinez D, Dieseldorff Jones KM, Michell CA, et al. Hypertrophic cardiomyopathy cardiac troponin C mutations differentially affect slow skeletal and cardiac muscle regulation. Front Physiol. 2017;8:221. https://doi.org/10.3389/fphys.2017.00221.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schuldt M, Johnston JR, He H, Huurman R, Pei J, Harakalova M, et al. Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. J Mol Cell Cardiol. 2021;150:77–90. https://doi.org/10.1016/j.yjmcc.2020.10.006.

    Article  CAS  PubMed  Google Scholar 

  99. • Singh RR, McNamara JW, Sadayappan S. Mutations in myosin S2 alter cardiac myosin-binding protein-C interaction in hypertrophic cardiomyopathy in a phosphorylation-dependent manner. J Biol Chem. 2021;297(1):100836. https://doi.org/10.1016/j.jbc.2021.100836. This study showed that three HCM-causing myosin heavy chain mutations augment the binding of myosin S2 region with cMyBP-C in HCM. Phosphorylation of cMyBP-C further increased these interactions. Individually, and together with cMyBP-C phosphorylation, these mutants augment the development of force.

  100. • Fomin A, Gartner A, Cyganek L, Tiburcy M, Tuleta I, Wellers L, et al. Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to TTN mutations. Sci Transl Med. 2021;13(618):eabd3079. https://doi.org/10.1126/scitranslmed.abd3079. Titin-truncating mutations are highly linked to DCM, although the presence of a truncated product is not known to cause disease. The authors express titin variants with truncations in various regions of the titin molecule in human-induced pluripotent stem cell–derived cardiomyocytes. Impaired contractility due to these mutations was rescued by either fixing the mutation or increasing WT titin levels with proteosome inhibitors.

  101. Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016;351(6273):617–21. https://doi.org/10.1126/science.aad3456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chuang C, Collibee S, Ashcraft L, Wang W, Vander Wal M, Wang X, et al. Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for the treatment of hypertrophic cardiomyopathy. J Med Chem. 2021;64(19):14142–52. https://doi.org/10.1021/acs.jmedchem.1c01290.

    Article  CAS  PubMed  Google Scholar 

  103. Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W, Gong H, et al. Deciphering the super relaxed state of human beta-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci U S A. 2018;115(35):E8143–52. https://doi.org/10.1073/pnas.1809540115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rohde JA, Roopnarine O, Thomas DD, Muretta JM. Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin. Proc Natl Acad Sci U S A. 2018;115(32):E7486–94. https://doi.org/10.1073/pnas.1720342115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cleland JG, Teerlink JR, Senior R, Nifontov EM, Mc Murray JJ, Lang CC, et al. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet. 2011;378(9792):676–83. https://doi.org/10.1016/S0140-6736(11)61126-4.

    Article  CAS  PubMed  Google Scholar 

  106. • Felker GM, Solomon SD, Claggett B, Diaz R, McMurray JJV, Metra M, et al. Assessment of omecamtiv mecarbil for the treatment of patients with severe heart failure: a post hoc analysis of data from the GALACTIC-HF randomized clinical trial. JAMA Cardiol. 2022;7(1):26–34. https://doi.org/10.1001/jamacardio.2021.4027. This article reported results from the phase three clinical trial of omecamtiv mecarbil for treatment of heart failure. Prior clinical studies show omecamtiv mecarbil did show effective improvements in heart failure. This study identified that a subset of patients with the lowest levels of cardiac function derived significant benefit from omecamtiv mecarbil.

    Article  PubMed  Google Scholar 

  107. Voors AA, Tamby JF, Cleland JG, Koren M, Forgosh LB, Gupta D, et al. Effects of danicamtiv, a novel cardiac myosin activator, in heart failure with reduced ejection fraction: experimental data and clinical results from a phase 2a trial. Eur J Heart Fail. 2020;22(9):1649–58. https://doi.org/10.1002/ejhf.1933.

    Article  CAS  PubMed  Google Scholar 

  108. • Romano R, Ghahremani S, Zimmerman T, Legere N, Thakar K, Ladha FA, et al. Reading frame repair of TTN truncation variants restores titin quantity and functions. Circulation. 2022;145(3):194–205. https://doi.org/10.1161/CIRCULATIONAHA.120.049997. This study explored TTN-truncating variants and proposed a treatment based on repairing the TTN reading frame to restore TTN protein levels. This technique decreased the TTN-truncating variant levels and increased TTN full-length amount.

    Article  CAS  PubMed  Google Scholar 

  109. Scoto M, Finkel R, Mercuri E, Muntoni F. Genetic therapies for inherited neuromuscular disorders. Lancet Child Adolesc Health. 2018;2(8):600–9. https://doi.org/10.1016/S2352-4642(18)30140-8.

    Article  PubMed  Google Scholar 

  110. Gramlich M, Pane LS, Zhou Q, Chen Z, Murgia M, Schotterl S, et al. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med. 2015;7(5):562–76. https://doi.org/10.15252/emmm.201505047.

  111. Reichart D, Newby GA, Wakimoto H, Lun M, Gorham JM, Curran JJ, et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med. 2023;29(2):412–21. https://doi.org/10.1038/s41591-022-02190-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chai AC, Cui M, Chemello F, Li H, Chen K, Tan W, et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023;29(2):401–11. https://doi.org/10.1038/s41591-022-02176-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38(7):883–91. https://doi.org/10.1038/s41587-020-0453-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71. https://doi.org/10.1038/nature24644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported by NIH grants NHLBI R00141698 and R56165137 (DYB) and Postdoctoral Fellowship 23POST1023125 (AAA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Y. Barefield.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barefield, D.Y., Alvarez-Arce, A. & Araujo, K.N. Mechanisms of Sarcomere Protein Mutation-Induced Cardiomyopathies. Curr Cardiol Rep 25, 473–484 (2023). https://doi.org/10.1007/s11886-023-01876-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01876-9

Keywords

Navigation