Skip to main content

Advertisement

Log in

Quantification of Myocardial Mitochondrial Membrane Potential Using PET

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To present a method enabling in vivo quantification of tissue membrane potential (ΔΨT), a proxy of mitochondrial membrane potential (ΔΨm), to review the origin and role of ΔΨm, and to highlight potential applications of myocardial ΔΨT imaging.

Recent Findings

Radiolabelled lipophilic cations have been used for decades to measure ΔΨm in vitro. Using similar compounds labeled with positron emitters and appropriate compartment modeling, this technique now allows in vivo quantification of ΔΨT with positron emission tomography. Studies have confirmed the feasibility of measuring myocardial ΔΨT in both animals and humans. In addition, ΔΨT showed very low variability among healthy subjects, suggesting that this method could allow detection of relatively small pathological changes.

Summary

In vivo assessment of myocardial ΔΨT provides a new tool to study the pathophysiology of cardiovascular diseases and has the potential to serve as a new biomarker to assess disease stage, prognosis, and response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kuznetsov AV, Margreiter R, Amberger A, Saks V, Grimm M. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta BBA - Mol Cell Res. 2011;1813:1144–52.

    Article  CAS  Google Scholar 

  2. Dhingra R, Margulets V, Chowdhury SR, Thliveris J, Jassal D, Fernyhough P, et al. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc Natl Acad Sci Natl Acad Sci. 2014;111:E5537–44.

    CAS  Google Scholar 

  3. Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci. 2005;1047:248–58.

    Article  CAS  PubMed  Google Scholar 

  4. Kamo N, Muratsugu M, Hongoh R, Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 1979;49:105–21.

    Article  CAS  PubMed  Google Scholar 

  5. Kauppinen RA, Hassinen IE. Monitoring of mitochondrial membrane potential in isolated perfused rat heart. Am J Phys. 1984;247:H508–16.

    CAS  Google Scholar 

  6. Angajala A, Lim S, Phillips JB, Kim J-H, Yates C, You Z, et al. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol [Internet]. Frontiers; 2018 [cited 2020 Oct 23];9. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2018.01605/full

  7. O’Rourke B. Metabolism: beyond the power of mitochondria. Nat Rev Cardiol. 2016;13:386–8.

    Article  PubMed  Google Scholar 

  8. O’Rourke B, Cortassa S, Aon MA. Mitochondrial ion channels: gatekeepers of life and death. Physiol Bethesda Md. 2005;20:303–15.

    Google Scholar 

  9. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33:1065–89.

    Article  CAS  PubMed  Google Scholar 

  10. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Electron-transport chains and their proton pumps. 2002;

  11. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013;47:9–23.

    Article  CAS  PubMed  Google Scholar 

  12. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997;416:15–8.

    Article  CAS  PubMed  Google Scholar 

  13. Liu SS. Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain--superoxide generating and cycling mechanisms in mitochondria. J Bioenerg Biomembr. 1999;31:367–76.

    Article  CAS  PubMed  Google Scholar 

  14. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, et al. Mitochondria-ROS crosstalk in the control of cell death and aging. J Signal Transduct. 2012;329635:2012.

    Google Scholar 

  15. Chinopoulos C. Mitochondrial consumption of cytosolic ATP: Not so fast. FEBS Lett. 2011;585:1255–9.

    Article  CAS  PubMed  Google Scholar 

  16. Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta BBA - Bioenerg. 1777;2008:1028–31.

    Google Scholar 

  17. •• Alpert NM, Guehl N, Ptaszek L, Pelletier-Galarneau M, Ruskin J, Mansour MC, et al. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One. 2018;13:e0190968. This study presents the first successful method for in vivo assessment of ΔΨT in swine, accounting for extracellular space and employing kinetic analysis to estimate tracer volume of distribution.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barth E, Stämmler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24:669–81.

    Article  CAS  PubMed  Google Scholar 

  19. •• Pelletier-Galarneau M, Petibon Y, Ma C, Han P, Kim SJW, Detmer FJ, et al. In vivo quantitative mapping of human mitochondrial cardiac membrane potential: a feasibility study. Eur J Nucl Med Mol Imaging. 2020. First-in-human study demonstrating the feasibility of in vivo ΔΨT quantification. The observed ΔΨT had very low inter-subject variability among healthy volunteers, suggesting that relatively small pathological changes could be detected.

  20. Alpert NM, Pelletier-Galarneau M, Petibon Y, Normandin MD, El Fakhri G. In vivo quantification of mitochondrial membrane potential. Nature. 2020;583:E17–8.

    Article  CAS  PubMed  Google Scholar 

  21. Scully PR, Bastarrika G, Moon JC, Treibel TA. Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography. Curr Cardiol Rep [Internet]. 2018 [cited 2020 Nov 18];20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840231/

  22. Fukuda H, Syrota A, Charbonneau P, Vallois J, Crouzel M, Prenant C, et al. Use of 11C-triphenylmethylphosphonium for the evaluation of membrane potential in the heart by positron-emission tomography. Eur J Nucl Med. 1986;11:478–83.

    Article  CAS  PubMed  Google Scholar 

  23. Gurm GS, Danik SB, Shoup TM, Weise S, Takahashi K, Laferrier S, et al. 4-[18F]-Tetraphenylphosphonium as a PET tracer for myocardial mitochondrial membrane potential. JACC Cardiovasc Imaging. 2012;5:285–92.

    Article  PubMed  Google Scholar 

  24. Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol. 2012;52:48–61.

    Article  CAS  PubMed  Google Scholar 

  25. Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol. 2000;27:661–70.

    Article  CAS  PubMed  Google Scholar 

  26. • Alpert NM, Pelletier-Galarneau M, Kim SJW, Petibon Y, Sun T, Ramos-Torres KM, et al. In-vivo imaging of mitochondrial depolarization of myocardium with positron emission tomography and a proton gradient uncoupler. Front Physiol. 2020;11:491. A study demonstrating that intracoronary infusion of a mitochondrial proton uncoupler leads to decreased 18F-TPP+ concentration in the corresponding territory, confirming that PET imaging with 18F-TPP+ is sensitive to temporal changes in ΔΨm.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wan B, Doumen C, Duszynski J, Salama G, Vary TC, LaNoue KF. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am J Phys. 1993;265:H453–60.

    CAS  Google Scholar 

  28. Kim D-Y, Kim H-S, Le UN, Jiang SN, Kim H-J, Lee K-C, et al. Evaluation of a mitochondrial voltage sensor, (18F-fluoropentyl) triphenylphosphonium cation, in a rat myocardial infarction model. J Nucl Med. 2012;53:1779–85.

    Article  CAS  PubMed  Google Scholar 

  29. Momcilovic M, Jones A, Bailey ST, Waldmann CM, Li R, Lee JT, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature. 2019;575:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Madar I, Huang Y, Ravert H, Dalrymple SL, Davidson NE, Isaacs JT, et al. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med. 2009;50:774–80.

    Article  CAS  PubMed  Google Scholar 

  31. Widlansky ME, Wang J, Shenouda SM, Hagen TM, Smith AR, Kizhakekuttu TJ, et al. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl Res J Lab Clin Med. 2010;156:15–25.

    CAS  Google Scholar 

  32. De Felice FG, Ferreira ST. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 2014;63:2262–72.

    Article  PubMed  Google Scholar 

  33. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106:360–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin L, Sharma VK, Sheu S-S. Mechanisms of reduced mitochondrial Ca2+ accumulation in failing hamster heart. Pflugers Arch. 2007;454:395–402.

    Article  CAS  PubMed  Google Scholar 

  35. Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium. 2011;50:222–33.

    Article  CAS  PubMed  Google Scholar 

  36. Rutledge C, Dudley S. Mitochondria and arrhythmias. Expert Rev Cardiovasc Ther. 2013;11:799–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berardi R, Caramanti M, Savini A, Chiorrini S, Pierantoni C, Onofri A, et al. State of the art for cardiotoxicity due to chemotherapy and to targeted therapies: a literature review. Crit Rev Oncol Hematol. 2013;88:75–86.

    Article  PubMed  Google Scholar 

  38. Witteles RM, Bosch X. Myocardial protection during cardiotoxic chemotherapy. Circulation. 2015;132:1835–45.

    Article  PubMed  Google Scholar 

  39. Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96:219.

    Article  CAS  PubMed  Google Scholar 

  40. Pointon AV, Walker TM, Phillips KM, Luo J, Riley J, Zhang S-D, et al. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. Melov S, editor. PLoS One. 2010;5:e12733.

    Article  PubMed  PubMed Central  Google Scholar 

  41. de Wolf FA. Binding of doxorubicin to cardiolipin as compared to other anionic phospholipids—an evaluation of electrostatic effects. Biosci Rep. 1991;11:275–84.

    Article  PubMed  Google Scholar 

  42. Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res. 2000;39:257–88.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang S, Liu X, Bawa-Khalfe T, Lu L-S, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    Article  PubMed  Google Scholar 

  44. Lyu YL, Kerrigan JE, Lin C-P, Azarova AM, Tsai Y-C, Ban Y, et al. Topoisomerase II mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–46.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu H, Sarkar S, Scott L, Danelisen I, Trush MA, Jia Z, et al. Doxorubicin redox biology: redox cycling, topoisomerase inhibition, and oxidative stress. React Oxyg Species Apex NC. 2016;1:189–98.

    Article  Google Scholar 

  46. Juan Carlos Plana, Maurizio Galderisi, Ana Barac, Michael S Ewer, Bonnie Ky, Marielle Scherrer-Crosbie, Javier Ganame, Igal A Sebag, Deborah A Agler, Luigi P Badano, Jose Banchs, Daniela Cardinale, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. J Am Soc Echocardiogr; 2014 [cited 2020 Nov 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/25172399/

  47. • McCluskey S, Haslop A, Coello C, Gunn R, Tate E, Southworth R, et al. Imaging chemotherapy induced acute cardiotoxicity with 18F-labelled lipophilic cations. J Nucl Med. 2019;jnumed.119.226787. This study demonstrates that myocardial concentration of a lipophilic cation radiotracer is significantly reduced following doxorubicin administration, indicating that PET assessment of ΔΨ has potential applications in chemotherapy-induced cardiotoxicity.

  48. Kumar AA, Kelly DP, Chirinos JA. Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation. 2019;139:1435–50.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest Am Soc Clin Investig. 2018;128:3716–26.

    Article  Google Scholar 

  50. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol. 2013;61:599–610.

    Article  CAS  PubMed  Google Scholar 

  51. Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2014;2:641–9.

    Article  PubMed  Google Scholar 

  52. Sanbe A, Tanonaka K, Kobayasi R, Takeo S. Effects of long-term therapy with ACE inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol. 1995;27:2209–22.

    Article  CAS  PubMed  Google Scholar 

  53. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999;85:357–63.

    Article  CAS  PubMed  Google Scholar 

  54. Odagiri K, Katoh H, Kawashima H, Tanaka T, Ohtani H, Saotome M, et al. Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. J Mol Cell Cardiol. 2009;46:989–97.

    Article  CAS  PubMed  Google Scholar 

  55. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H2181–90.

    Article  CAS  PubMed  Google Scholar 

  56. Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovasc Res. 2008;77:334–43.

    Article  CAS  PubMed  Google Scholar 

  57. O’Rourke B. Mitochondrial ion channels. Annu Rev Physiol. 2007;69:19–49.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. Massachusetts Med Soc. 2007;357:1121–35.

    CAS  Google Scholar 

  59. Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34:232–7.

    Article  CAS  PubMed  Google Scholar 

  60. Halestrap A. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res. 2004;61:372–85.

    Article  CAS  PubMed  Google Scholar 

  61. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341(Pt 2):233–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded in part by the National Institute of Health under P41EB022544 and R01HL137230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges El Fakhri.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Dr. Normandin has a patent US20190125281A1 issued. Dr. Alpert has a patent US020190125281A120190502 issued. Dr. El Fakhri has a patent 16/092,650 pending. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier-Galarneau, M., Detmer, F.J., Petibon, Y. et al. Quantification of Myocardial Mitochondrial Membrane Potential Using PET. Curr Cardiol Rep 23, 70 (2021). https://doi.org/10.1007/s11886-021-01500-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01500-8

Keywords

Navigation