Skip to main content

Advertisement

Log in

Assessment of Myocarditis: Cardiac MR, PET/CT, or PET/MR?

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diagnosis of myocarditis is challenging given its variable clinical manifestations and non-specific laboratory findings. Cardiac magnetic resonance (MR) is currently the preferred imaging modality for the diagnosis of myocarditis. 18F-fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT), as a functional imaging tool, has a potential role in the assessment of myocarditis by detecting the underlying myocardial inflammatory activity. Data are accumulating that simultaneous cardiac PET/MR may have complementary and incremental values for the evaluation of myocarditis compared to PET/CT or cardiac MR alone. The article aims to summarize the findings in the literature and discuss future directions of cardiac PET/MR for myocarditis.

Recent Findings

The Lake Louis Criteria (CLL) of cardiac MR is widely used for the diagnosis of myocarditis. It has an overall acceptable sensitivity of 67% and specificity of 91% for acute myocarditis but does not have the same accuracy for chronic myocarditis. FDG PET/CT is capable of assessing myocarditis by providing metabolic information of inflammation as increased myocardial FDG uptake. In addition to reduced radiation exposure, FDG PET performed on a hybrid PET/MR may detect more myocarditis than FDG PET/CT, because of the delayed PET acquisition time on PET/MR. Case-based observations and small clinical studies of FDG PET/MR have shown that FDG PET findings as abnormally increased myocardial uptake correlate well with the cardiac MR biomarkers. FDG PET findings may add complementary and incremental values to cardiac MR by improving the sensitivity of cardiac MR for mild or borderline myocarditis, and increasing specificity for chronic myocarditis.

Summary

Preliminary data from retrospective and case-based observational studies have suggested the complementary and incremental values of simultaneous cardiac FDG PET/MR for evaluation of myocarditis, compared to PET/CT or MR alone. Well-designed studies are needed to confirm the findings and to assess the value of cardiac PET/MR for clinical management and more importantly patient’s outcome in both acute and chronic myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34:2636–48.

    Article  Google Scholar 

  2. Cooper LT Jr. Myocarditis. N Engl J Med. 2009;360:1526–38.

    Article  CAS  Google Scholar 

  3. Caforio ALP, Malipiero G, Marcolongo R, Iliceto S. Myocarditis: a clinical overview. Curr Cardiol Rep. 2017;19:63–74.

    Article  CAS  Google Scholar 

  4. Ammirati E, Cipriani M, Moro C, Raineri C, Pini D, Sormani P, et al. Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis: the Multicenter Lombardy Registry. Circulation. 2018;138:1088–99.

    Article  Google Scholar 

  5. Polito MV, Ravera A, Mennella R, Ferrara S, Baldi C, Citro R, et al. Effects of aortic counterpulsation in 6 cases of fulminant myocarditis. Am J Emerg Med. 2015;33:1315–7.

    Article  Google Scholar 

  6. Frustaci A, Petrosillo N, Francone M, Verardo R, Ippolito G, Chimenti C, et al. Biopsy-proven autoimmune myocarditis in HIV-associated dilated cardiomyopathy. BMC Infect Dis. 2014;14:729–32.

    Article  Google Scholar 

  7. Brambatti M, Matassini MV, Adler ED, Klingel K, Camici PG, Ammirati E. Eosinophilic myocarditis: characteristics, treatment, and outcomes. J Am Coll Cardiol. 2017;70:2363–75.

    Article  Google Scholar 

  8. Hauck AJ, Kearney DL, Edwards WD. Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis: implications for role of sampling error. Mayo Clin Proc. 1989;64:1235–45.

    Article  CAS  Google Scholar 

  9. Kim J, Feller ED, Chen W, Dilsizian V. FDG PET/CT imaging for LVAD associated infections. JACC Cardiovasc Imaging. 2014;7:839–42.

    Article  Google Scholar 

  10. Kim J, Feller ED, Chen W, Liang Y, Dilsizian V. FDG PET/CT for early detection and localization of left ventricular assist device infection: impact on patient management and outcome. JACC Cardiovasc Imaging. 2019;12:722–9.

    Article  CAS  Google Scholar 

  11. Chen W, Sajadi MM, Dilsizian V. Merits of FDG PET/CT and functional molecular imaging over anatomic imaging with echocardiography and ct angiography for the diagnosis of cardiac device infections. JACC Cardiovasc Imaging. 2018;11:1679–91.

    Article  Google Scholar 

  12. Chen W, Dilsizian V. FDG PET/CT for the diagnosis and management of infective endocarditis: expert consensus vs evidence-based practice. J Nucl Cardiol. 2019;26:313–5.

    Article  Google Scholar 

  13. Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med. 2017;58:1341–53.

    Article  CAS  Google Scholar 

  14. Chen W, Dilsizian V. (18)F-Fluorodeoxyglucose PET imaging of coronary atherosclerosis and plaque inflammation. Curr Cardiol Rep. 2010;12:179–84.

    Article  Google Scholar 

  15. Chen W, Dilsizian V. Targeted PET/CT imaging of vulnerable atherosclerotic plaques: microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose. Curr Cardiol Rep. 2013;15:364–9.

    Article  Google Scholar 

  16. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190(2):W151–6.

    Article  Google Scholar 

  17. Chen W, Kim J, Molchanova-Cook OP, Dilsizian V. The potential of FDG PET/CT for early diagnosis of cardiac device and prosthetic valve infection before morphologic damages ensue. Curr Cardiol Rep. 2014;16:459.

    Article  Google Scholar 

  18. Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol. 2016;23:244–52.

    Article  Google Scholar 

  19. • Tanimura M, Dohi K, Imanaka-Yoshida K, Omori T, Moriwaki K, Nakamori S, et al. Fulminant myocarditis with prolonged active lymphocytic infiltration after hemodynamic recovery. Int Heart J. 2017;58:294–7. This is an endomyocardial biopsy proven fulminant myocarditis case with persistent increased FDG uptake on PET/CT until 70 days after the onset. Because of the PET/CT findings the patient underwent immunosuppressive therapy for 3 months. A follow up scan showed no FDG uptake. This case indicates an important role of FDG PET/CT in the treatment decision making of myocarditis.

    Article  Google Scholar 

  20. Ozawa K, Funabashi N, Daimon M, Takaoka H, Takano H, Uehara M, et al. Determination of optimum periods between onset of suspected acute myocarditis and 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of inflammatory left ventricular myocardium. Int J Cardiol. 2013;169:196–200.

    Article  Google Scholar 

  21. Moriwaki K, Dohi K, Omori T, Tanimura M, Sugiura E, Nakamori S, et al. A survival case of fulminant right-side dominant eosinophilic myocarditis. Int Heart J. 2017;58:459–62.

    Article  Google Scholar 

  22. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. J Am Coll Cardiol. 2007;50:1914–31.

    Article  Google Scholar 

  23. • Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. J Am Coll Cardiol. 2009;53:1475–87. A JACC White Paper on cardiac MR in myocarditis, which includes indications for CMR in patients with suspected myocarditis, CMR protocol standards, terminology for reporting CMR findings, and diagnostic CMR criteria for myocarditis (i.e., “Lake Louise Criteria”).

    Article  Google Scholar 

  24. Gagliardi MG, Polletta B, Di Renzi P. MRI for the diagnosis and follow-up of myocarditis. Circulation. 1999;99:458–9.

    Article  CAS  Google Scholar 

  25. Abdel-Aty H, Boyé P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005;45:1815–22.

    Article  Google Scholar 

  26. Yilmaz A, Ferreira V, Klingel K, Kandolf R, Neubauer S, Sechtem U. Role of cardiovascular magnetic resonance imaging (CMR) in the diagnosis of acute and chronic myocarditis. Heart Fail Rev. 2013;18:747–60.

    Article  Google Scholar 

  27. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  Google Scholar 

  28. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation. 2004;109:1250–8.

    Article  Google Scholar 

  29. Luetkens JA, Doerner J, Thomas DK, Dabir D, Gieseke J, Sprinkart AM, et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology. 2014;273:383–92.

    Article  Google Scholar 

  30. Thavendiranathan P, Walls M, Giri S, Verhaert D, Rajagopalan S, Moore S, et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging. 2012;5:102–10.

    Article  Google Scholar 

  31. Lurz P, Luecke C, Eitel I, Föhrenbach F, Frank C, Grothoff M, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: The MyoRacer-Trial. J Am Coll Cardiol. 2016;67:1800–11.

    Article  Google Scholar 

  32. Bönner F, Spieker M, Haberkorn S, Jacoby C, Flögel U, Schnackenburg B, et al. Myocardial T2 mapping increases noninvasive diagnostic accuracy for biopsy-proven myocarditis. JACC Cardiovasc Imaging. 2016;9:1467–9.

    Article  Google Scholar 

  33. von Knobelsdorff-Brenkenhoff F, Schüler J, Dogangüzel S, Dieringer MA, Rudolph A, Greiser A, et al. Detection and monitoring of acute myocarditis applying quantitative cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2017;10:e005242.

    Google Scholar 

  34. D’Ambrosio A, Patti G, Manzoli A, Sinagra G, Di Lenarda A, Silvestri F, et al. The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart. 2001;85:499–504.

    Article  Google Scholar 

  35. Gutberlet M, Spors B, Thoma T, Bertram H, Denecke T, Felix R, et al. Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology. 2008;246:401–9.

    Article  Google Scholar 

  36. Lurz P, Eitel I, Adam J, Steiner J, Grothoff M, Desch S, et al. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging. 2012;5:513–24.

    Article  Google Scholar 

  37. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology. 2013;267:26–44.

    Article  Google Scholar 

  38. Ouyang J, Li Q, El Fakhri G. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med. 2013;43:60–7.

    Article  Google Scholar 

  39. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  Google Scholar 

  40. Nensa F, Poeppel TD, Krings P, Schlosser T. Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J. 2014;35:2173.

    Article  Google Scholar 

  41. Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, et al. Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;295:H1234–42.

    Article  CAS  Google Scholar 

  42. von Olshausen G, Hyafil F, Langwieser N, Laugwitz KL, Schwaiger M, Ibrahim T. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18F-fluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation. 2014;130:925–6.

    Article  Google Scholar 

  43. Takano H, Nakagawa K, Ishio N, Daimon M, Daimon M, Kobayashi Y, et al. Active myocarditis in a patient with chronic active Epstein-Barr virus infection. Int J Cardiol. 2008;130:e11–3.

    Article  Google Scholar 

  44. • Abgral R, Dweck MR, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Clinical utility of combined FDG-PET/MR to assess myocardial disease. JACC Cardiovasc Imaging. 2017;10:594–7. An acute viral myocarditis with abnormal uptake on cardiac MR and FDG PET, which shows complementary value of cardiac PET/MR in diagnosing myocarditis.

    Article  Google Scholar 

  45. •• Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J. Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI. J Nucl Cardiol. 2018;25:785–94. A retrospective study with a relatively large sample number showed good correlation of FDG PET uptake to cardiac MR findings on hybrid cardiac PET/MR in myocarditis patients. There were cases in the study showing incremental roles of cardiac PET/MR for assessment of myocarditis.

    Article  Google Scholar 

  46. Rischpler C, Nekolla SG, Kunze KP, Schwaiger M. PET/MRI of the heart. Semin Nucl Med. 2015;45:234–47.

    Article  Google Scholar 

  47. Aretz HT, Billingham ME, Edwards WD, Factor SM, Fallon JT, Fenoglio JJ Jr, et al. Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol. 1987;1:3–14.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengen Chen.

Ethics declarations

Conflict of Interest

Wengen Chen and Jean Jeudy declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Jeudy, J. Assessment of Myocarditis: Cardiac MR, PET/CT, or PET/MR?. Curr Cardiol Rep 21, 76 (2019). https://doi.org/10.1007/s11886-019-1158-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1158-0

Keywords

Navigation