Skip to main content
Log in

The Importance and Role of Multiple Risk Factor Control in Type 2 Diabetes

  • Diabetes and Cardiovascular Disease (N Wong, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The importance of composite risk factor control for reducing CVD risk in type 2 diabetes (T2DM) has gained increased attention and here we review the latest findings in the field.

Recent Findings

The Steno-2 study was the first to show that early intensive risk factor control could improve risk factor status and halve the CVD risk in patients with diabetes with lasting impact. A range of observational studies have added further insight to the importance of multiple risk factor control showing an incremental association between number of risk factors controlled and reduction in CVD risk. Noteworthy, a Swedish population-based study recently showed that optimal risk factor status in patients with T2DM was associated with a CVD risk similar to the general population.

Summary

Early intensive intervention to achieve optimal risk factor control reduces CVD risk and should be of principal focus in T2DM management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. International Diabetes Federation (2017) IDF Diabetes Atlas - Eighth edition 2017.

  2. Kannel WB, McGee DL. Diabetes and cardiovascular disease—the Framingham study. JAMA. 1979;241:2035–8.

    Article  CAS  Google Scholar 

  3. Wong ND, Patao C, Malik S, Iloeje U. Preventable coronary heart disease events from control of cardiovascular risk factors in US adults with diabetes (projections from utilizing the UKPDS risk engine). Am J Cardiol. 2014;113:1356–61.

    Article  Google Scholar 

  4. Sarwar N, Gao P, Kondapally Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.

    Article  CAS  Google Scholar 

  5. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death. Arch Intern Med. 2004;164:1422–6.

    Article  Google Scholar 

  6. Spencer EA, Pirie KL, Stevens RJ, Beral V, Brown A, Liu B, et al. Diabetes and modifiable risk factors for cardiovascular disease: the prospective million women study. Eur J Epidemiol. 2008;23:793–9.

    Article  Google Scholar 

  7. Association AD. Lifestyle management: standards of medical care in Diabetes—2018. Diabetes Care. 2018;41:S38–50.

    Article  Google Scholar 

  8. Organization WH (2013) Global action plan for the prevention and control of noncommunicable diseases 2013–2020. 102.

  9. Martín-Timón I. Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes. 2014;5:444.

    Article  Google Scholar 

  10. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183–96.

    Article  CAS  Google Scholar 

  11. Murray CJL. The state of US health, 1990–2010. Jama. 2013;310:591.

    Article  CAS  Google Scholar 

  12. Mozaffarian D, Appel LJ, Van HL. Recent advances in preventive cardiology and lifestyle medicine: components of a cardioprotective diet: new insights. Circulation. 2011;123:2870–91.

    Article  Google Scholar 

  13. The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    Article  Google Scholar 

  14. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, E a W, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  CAS  Google Scholar 

  15. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345:790–7.

    Article  CAS  Google Scholar 

  16. Narayan KMV, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care. 2007;30:1562–6.

    Article  CAS  Google Scholar 

  17. Tobias DK, Pan A, Jackson CL, Reilly EJO, Ding EL, Willett WC, et al. Body-mass index and mortality among adults with incident type 2 diabetes. N Engl J Med. 2014;370:233–44.

    Article  CAS  Google Scholar 

  18. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378:e34.

    Article  CAS  Google Scholar 

  19. Grundy SM, Stone NJ, Bailey AL, et al (2018) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.

  20. Orlich MJ, Singh PN, Sabaté J, Jaceldo-siegl K, Fan J, Knutsen S, et al. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern Med. 2013;173:1230–8.

    Article  CAS  Google Scholar 

  21. Sluik D, Buijsse B, Muckelbauer R, Kaaks R, Teucher B, Johnsen NF, et al. Physical activity and mortality in individuals with diabetes mellitus—a prospective study and meta-analysis. Arch Intern Med. 2012;172:1285–95.

    Article  Google Scholar 

  22. Fagard RH, Nilsson PM. Smoking and diabetes—the double health hazard. Prim Care Diabetes. 2009;3:205–9.

    Article  Google Scholar 

  23. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993;16:434–44.

    Article  CAS  Google Scholar 

  24. Al-Delaimy WK, Mansom JE, Solomon CG, Kawachi I, Stampfer MJ, Willett WC, et al. Smoking and risk of coronary heart disease among women with type 2 diabetes mellitus. Arch Intern Med. 2002;162:273–9.

    Article  CAS  Google Scholar 

  25. Qin R, Chen T, Lou Q, Yu D. Excess risk of mortality and cardiovascular events associated with smoking among patients with diabetes: meta-analysis of observational prospective studies. Int J Cardiol. 2013;167:342–50.

    Article  Google Scholar 

  26. Erhardt L. Cigarette smoking: an undertreated risk factor for cardiovascular disease. Atherosclerosis. 2009;205:23–32.

    Article  CAS  Google Scholar 

  27. Stone MA, Charpentier G, Doggen K, Kuss O, Lindblad U, Kellner C, et al. Quality of care of people with type 2 diabetes in eight European countries: findings from the guideline adherence to enhance care (GUIDANCE) study. Diabetes Care. 2013;36:2628–38.

    Article  Google Scholar 

  28. Fiore M, Jaén C, Baker T Treating tobacco use and dependence: 2008 update. Clinical practice guideline. Rockville, MD: U.S. Department of Health and Human Services. Public Health Service.

  29. Rigotti NA, Clair C. Clinical update managing tobacco use: the neglected cardiovascular disease risk factor. Eur Heart J. 2013;34:3259–67.

    Article  Google Scholar 

  30. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  Google Scholar 

  31. The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  Google Scholar 

  32. The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  Google Scholar 

  33. Gæde P, Lund AH, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.

    Article  Google Scholar 

  34. •• Gæde P, Oellgaard J, Carstensen B, Rossing P, Lund-Andersen H, Parving HH, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016;59:2298–307 This study highlights the long-term effect of early intensive risk factor control in type 2 diabetes.

    Article  Google Scholar 

  35. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  Google Scholar 

  36. Ceriello A. Hypothesis: the “metabolic memory”, the new challenge of diabetes. Diabetes Res Clin Pract. 2009;86S:2–6.

  37. Khunti K, Kosiborod M, Ray KK. Legacy benefits of blood glucose, blood pressure and lipid control in individuals with diabetes and cardiovascular disease: time to overcome multifactorial therapeutic inertia? Diabetes Obes Metab. 2018;20:1337–41.

    Article  Google Scholar 

  38. American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes—2018. Diabetes Care. 2018;41:S55–64.

    Article  Google Scholar 

  39. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  Google Scholar 

  40. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  Google Scholar 

  41. Hu G, Jousilahti P, Tuomilehto J. Joint effects of history of hypertension at baseline and type 2 diabetes at baseline and during follow-up on the risk of coronary heart disease. Eur Heart J. 2007;28:3059–66.

    Article  Google Scholar 

  42. Chen G, McAlister FA, Walker RL, Hemmelgarn BR, Campbell NR. Cardiovascular outcomes in Framingham participants with diabetes: the importance of blood pressure. Hypertension. 2011;57:891–7.

    Article  CAS  Google Scholar 

  43. Joseph J, Svartberg J, Njølstad I, Schirmer H. Change in cardiovascular risk factors in relation to diabetes status: the Tromsø study. Eur J Prev Cardiol. 2011;19:551–7.

    Article  Google Scholar 

  44. Turner R, Holman R, Stratton I, Cull C, Frighi V, Manley S, et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br Med J. 1998;317:703–13.

    Article  Google Scholar 

  45. Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, Julius S, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the hypertension optimal treatment (HOT) randomised trial. Lancet. 1998;351:1755–62.

    Article  CAS  Google Scholar 

  46. Patel A, Group AC. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–40.

    Article  CAS  Google Scholar 

  47. The ACCORD Study Group. Effects of intensive blood pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  Google Scholar 

  48. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.

    Article  Google Scholar 

  49. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, et al. Eff ects of intensive blood pressure lowering on cardiovascular and renal outcomes : updated systematic review and meta-analysis. Lancet. 2016;387:435–43.

    Article  Google Scholar 

  50. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes—a systematic review and meta-analysis. JAMA. 2015;313:603–15.

    Article  Google Scholar 

  51. Grossman A, Grossman E. Blood pressure control in type 2 diabetic patients. Cardiovasc Diabetol. 2017;16:1–15.

    Article  Google Scholar 

  52. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004;27:1496–504.

    Article  CAS  Google Scholar 

  53. Kannel B. Lipid, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J. 1985;110:1100–7.

    Article  CAS  Google Scholar 

  54. Colhoun HM, Betteridge JD, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–96.

    Article  CAS  Google Scholar 

  55. Collins R, Armitage J, Parish S, Sleight P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2005;361:2005–16.

    Google Scholar 

  56. • Griffin SJ, Borch-Johnsen K, Davies MJ, Khunti K, Rutten GEHM, Sandbæk A, et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomised trial. Lancet. 2011;378:156–67 This study showed that screening of type 2 diabetes was associated with non-significant reduction in cardiovascular events and death within five years of follow-up.

    Article  Google Scholar 

  57. Shi L, Ye X, Lu M, Wu EQ, Sharma H, Thomason D, et al. Clinical and economic benefits associated with the achievement of both HbA1c and LDL cholesterol goals in veterans with type 2 diabetes. Diabetes Care. 2013;36:3297–304.

    Article  CAS  Google Scholar 

  58. Bittner V, Bertolet M, Barraza Felix R, Farkouh ME, Goldberg S, Ramanathan KB, et al. Comprehensive cardiovascular risk factor control improves survival: the BARI 2D trial. J Am Coll Cardiol. 2015;66:765–73.

    Article  Google Scholar 

  59. Wan EYF, Fung CSC, Yu EYT, Chin WY, Fong DYT, Chan AKC, et al. Effect of multifactorial treatment targets and relative importance of hemoglobin A1c, blood pressure, and low-density lipoprotein-cholesterol on cardiovascular diseases in Chinese primary care patients with type 2 diabetes mellitus: a population-based ret. J Am Heart Assoc. 2017;6:1–13.

    Article  Google Scholar 

  60. Gæde P, Vedel P, Larsen N, Jensen GVH, Parving H-H, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  Google Scholar 

  61. Pagidipati NJ, Navar AM, Pieper KS, Green JB, Bethel MA, Armstrong PW, et al. Secondary prevention of cardiovascular disease in patients with type 2 diabetes mellitus: international insights from the TECOS trial (trial evaluating cardiovascular outcomes with sitagliptin). Circulation. 2017;136:1193–203.

    Article  Google Scholar 

  62. Wong ND, Zhao Y, Patel R, Patao C, Malik S, Bertoni AG, et al. Cardiovascular risk factor targets and cardiovascular disease event risk in diabetes: a pooling project of the atherosclerosis risk in communities study, multi-ethnic study of atherosclerosis, and Jackson heart study. Diabetes Care. 2016;39:668–76.

    Article  CAS  Google Scholar 

  63. Saydah SH, Gregg EW, Kahn HS, Ali MK. Mortality associated with less intense risk-factor control among adults with diabetes in the United States. Prim Care Diabetes. 2017;2:3–12.

    Google Scholar 

  64. Hamada S, Gulliford MC. Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes and chronic kidney disease: a population-based cohort study. BMJ Open. 2018;8:1–8.

    Article  Google Scholar 

  65. •• Rawshani A, Rawshani A, Franzén S, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379:633–44 This study showed that the numbers of risk factor at target at time of type 2 diabetes diagnosis was inversely associated with the risk of stroke, myocardial infarction, and death, and that the risk of these outcomes was not increased in diabetes patients with all risk factors at target in comparison to the general population.

    Article  Google Scholar 

  66. Vaccaro O, Franzini L, Miccoli R, Cavalot F, Ardigò D, Boemi M, et al. Feasibility and effectiveness in clinical practice of a multifactorial intervention for the reduction of cardiovascular risk in patients with. Diabetes Care. 2013;36:2566–72. https://doi.org/10.2337/dc12-1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Safai N, Carstensen B, Vestergaard H, Ridderstråle M. Impact of a multifactorial treatment programme on clinical outcomes and cardiovascular risk estimates: a retrospective cohort study from a specialised diabetes centre in Denmark. BMJ Open. 2018;8:1–9.

    Article  Google Scholar 

  68. Wong ND, Patao C, Wong K, Malik S, Franklin SS, Iloeje U. Trends in control of cardiovascular risk factors among US adults with type 2 diabetes from 1999 to 2010: comparison by prevalent cardiovascular disease status. Diab Vasc Dis Res. 2013;10:505–13.

    Article  Google Scholar 

  69. Huang ES, Meigs JB, Singer DE. The effect of interventions to prevent cardiovascular disease in patients with type 2 diabetes mellitus. Am J Med. 2001;111:633–42.

    Article  CAS  Google Scholar 

  70. Yudkin JS, Richter B, Gale EAM. Intensified glucose lowering in type 2 diabetes: time for a bolder reappraisal. Diabetologia. 2010;53:2079–85.

    Article  CAS  Google Scholar 

  71. Afsharian S, Akbarpour S, Abdi H, Sheikholeslami F, Moeini AS, Khalili D, et al. Risk factors for cardiovascular disease and mortality events in adults with type 2 diabetes—a 10-year follow-up: Tehran Lipid and Glucose Study. Diabetes Metab Res Rev. 2016;32:596–606.

    Article  CAS  Google Scholar 

  72. Gæde P, Pedersen O. Intensive integrated therapy of type 2 diabetes: implications for long-term prognosis. Diabetes. 2004;53:39–47.

    Article  Google Scholar 

  73. International Diabetes Federation (2018) Taking diabetes to heart IDF CVD survey key findings.

  74. Schmittdiel JA, Uratsu CS, Karter AJ, Heisler M, Subramanian U, Mangione CM, et al. Why don’t diabetes patients achieve recommended risk factor targets? Poor adherence versus lack of treatment intensification. J Gen Intern Med. 2008;23:588–94.

    Article  Google Scholar 

  75. Organization WH (2003) Adherence to long-term therapies—evidence for action.

  76. Khunti K, Wolden ML, Thorsted BL, Andersen M, Davies MJ. Clinical inertia in people with type 2 diabetes. Diabetes Care. 2013;36:3411–7. https://doi.org/10.2337/dc13-0331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Okonofua EC, Simpson KN, Jesri A, Rehman SU, Durkalski VL, Egan BM (2010) Therapeutic inertia is an impediment to achieving the healthy people 2010 blood pressure control goals.

  78. Chiang C, Ferrières J, Gotcheva NN, Raal FJ, Shehab A, Sung J, et al. Suboptimal control of lipid levels : results from 29 countries participating in the Centralized Pan-Regional Surveys on the Undertreatment of Hypercholesterolaemia (CEPHEUS). J Atheroscler Thromb. 2016;23:567–87.

    Article  CAS  Google Scholar 

  79. Tricco AC, Ivers NM, Grimshaw JM, Moher D, Turner L, Galipeau J, et al. Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis. Lancet. 2012;379:2252–61.

    Article  Google Scholar 

  80. Seidu S, Walker NS, Bodicoat DH, Davies MJ, Khunti K. A systematic review of interventions targeting primary care or community based professionals on cardio-metabolic risk factor control in people with diabetes. Diabetes Res Clin Pract. 2016;113:1–13.

    Article  CAS  Google Scholar 

  81. Ong SE, Jun J, Koh K, Toh SES, Chia KS, Balabanova D, et al. Assessing the influence of health systems on type 2 diabetes mellitus awareness, treatment, adherence, and control: a systematic review. PLoS One. 2018;13:1–42.

    Article  Google Scholar 

Download references

Funding

This review was funded by an independent research grant (18-R125-A8381-22082) from the Danish Heart Foundation to cover Dr. Nørgaard’s salary. The Danish Heart Foundation had no role in the conduct of any aspects of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Holm Nørgaard.

Ethics declarations

Conflict of Interest

Caroline Holm Nørgaard, Mitra Mosslemi, and Christina J.-Y. Lee declare that they have no conflict of interest.

Christian Torp-Pedersen reports grants from Bayer.

Nathan D. Wong reports grants from Amgen, Pfizer, Boehringer-Ingelheim, and Novo Nordisk; and personal fees from Astra-Zeneca.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nørgaard, C.H., Mosslemi, M., Lee, C.JY. et al. The Importance and Role of Multiple Risk Factor Control in Type 2 Diabetes. Curr Cardiol Rep 21, 35 (2019). https://doi.org/10.1007/s11886-019-1123-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1123-y

Keywords

Navigation