Skip to main content
Log in

What are the most useful and trustworthy noninvasive anatomic markers of existing vascular disease?

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the leading cause of mortality and morbidity in developed countries. Evidence challenges the notion that the severity of lesions on angiography is a predictor of future cardiac events. With the recognition that subclinical coronary artery stenoses are responsible for myocardial infarcts and sudden death, it may be important to identify patients with plaque characteristics that may place them at increased risk. Intravascular ultrasound, though invasive, remains the current imaging gold standard. Computed tomography, cardiac magnetic resonance, and single-photon emission CT positron emission tomography are evolving and promising modalities. Functional studies reflecting plaque temperature and molecular imaging reflecting plaque constituents are being developed. We review the pathology of the vulnerable atherosclerotic plaque and recent innovations in imaging modalities to assess plaque complication risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Muller JE, Tawakol A, Kathiresan S, Narula J: New opportunities for identification and reduction of coronary risk: treatment of vulnerable patients, arteries, and plaques. J Am Coll Cardiol 2006, 47:C2-C6.

    Article  PubMed  Google Scholar 

  2. Ambrose JA, Winters SL, Arora RR, et al.: Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 1986, 7:472–478.

    Article  PubMed  CAS  Google Scholar 

  3. Little WC, Constantinescu M, Applegate RJ, et al.: Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988, 78:1157–1166.

    Article  PubMed  CAS  Google Scholar 

  4. Lafont A: Basic aspects of plaque vulnerability. Heart 2003, 89:1262–1267.

    Article  PubMed  Google Scholar 

  5. Spagnoli LG, Bonanno E, Mauriello A, et al.: Multicentric inflammation in epicardial coronary arteries of patients dying of acute myocardial infarction. J Am Coll Cardiol 2002, 40:1579–1588.

    Article  PubMed  Google Scholar 

  6. Naghavi M, Libby P, Falk E, et al.: From vulnerable plaque to vulnerable patient - a call for new definitions and risk assessment strategies: Part II. Circulation 2003, 108:1772–1778.

    Article  PubMed  Google Scholar 

  7. Weissberg PL: Atherogenesis: current understanding of the causes of atheroma. Heart 2000, 83:247–252.

    Article  PubMed  CAS  Google Scholar 

  8. Toutouzas K, Vaina S, Tsiamis E, et al.: Detection of increased temperature of the culprit lesion after recent myocardial infarction: the favorable effect of statins. Am Heart J 2004, 148:783–788.

    Article  PubMed  Google Scholar 

  9. Stary HC, Blankenhorn DH, Chandler AB, et al.: A definition of the intima of human arteries and of its atherosclerosis- prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1992, 85:391- 405.

    PubMed  CAS  Google Scholar 

  10. Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006, 47:C7-C12.

    Article  PubMed  CAS  Google Scholar 

  11. Dickson BC, Gotlieb AI: Towards understanding acute destabilization of vulnerable atherosclerotic plaques. Cardiovasc Pathol 2003, 12:237–248.

    Article  PubMed  CAS  Google Scholar 

  12. Stary HC: Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 2000, 20:1177–1178.

    Article  PubMed  CAS  Google Scholar 

  13. Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the Vulnerable Plaque. J Am Coll Cardiol 2006, 47:C13-C18. Excellent review of the pathology of the important vulnerable atheromatous plaques.

    Article  PubMed  CAS  Google Scholar 

  14. Farb A, Tang AL, Burke AP, et al.: Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 1995, 92:1701–1709.

    PubMed  CAS  Google Scholar 

  15. Virmani R, Kolodgie FD, Burke AP, et al.: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20:1262–1275.

    Article  PubMed  CAS  Google Scholar 

  16. Veinot JP, Srivatsa S, Carlson P: Beta3 integrin--a promiscuous integrin involved in vascular pathology. Can J Cardiol 1999, 15:762–770.

    PubMed  CAS  Google Scholar 

  17. Abedin M, Tintut Y, Demer LL: Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004, 24:1161–70.

    Article  PubMed  CAS  Google Scholar 

  18. Glagov S, Weisenberg E, Zarins CK, et al.: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987, 316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  19. Fuster V, Stein B, Ambrose JA, et al.: Atherosclerotic plaque rupture and thrombosis: evolving concepts. Circulation 1990, 82:II–47-II-59.

    Google Scholar 

  20. Richardson PD, Davies MJ, Born GVR: Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989, 2:941–944.

    Article  PubMed  CAS  Google Scholar 

  21. Kullo IJ, Edwards WD, Schwartz RS: Vulnerable plaque: pathobiology and clinical implications. Ann Intern Med 1998, 129:1050–1060.

    PubMed  CAS  Google Scholar 

  22. Ross R: Atherosclerosis--an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  23. Torzewski J: C-Reactive protein and atherogenesis: new insights from established animal models. Am J Pathol 2005, 167:923–925.

    Article  PubMed  CAS  Google Scholar 

  24. Sun H, Koike T, Ichikawa T, et al.: C-reactive protein in atherosclerotic lesions: its origin and pathophysiological significance. Am J Pathol 2005, 167:1139–1148.

    Article  PubMed  CAS  Google Scholar 

  25. Khreiss T, Jozsef L, Potempa LA, Filep JG: Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ Res 2005, 97:690–697.

    Article  PubMed  CAS  Google Scholar 

  26. Yeh ETH: A new perspective on the biology of C-reactive protein. Circ Res 2005, 97:609–611.

    Article  PubMed  CAS  Google Scholar 

  27. Burke AP, Farb A, Malcom GT, et al.: Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997, 336:1276–1282.

    Article  PubMed  CAS  Google Scholar 

  28. Burke AP, Farb A, Malcom GT, et al.: Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 1998, 97:2110–2116.

    PubMed  CAS  Google Scholar 

  29. Nissen SE: Halting the progression of atherosclerosis with intensive lipid lowering: results from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am J Med 2005, 118(Suppl 12A):22–27.

    Article  PubMed  Google Scholar 

  30. Nissen SE, Tuzcu EM, Schoenhagen P, et al.: Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004, 291:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  31. Burgstahler C, Reimann A, Beck T, et al.: Imaging of a regressive coronary soft plaque under lipid lowering therapy by multi-slice computed tomography. Int J Cardiovasc Imaging 2006, 22:119–121.

    Article  PubMed  Google Scholar 

  32. Hartung D, Sarai M, Petrov A, et al.: Resolution of apoptosis in atherosclerotic plaque by dietary modification and statin therapy. J Nucl Med 2005, 46:2051–2056.

    PubMed  CAS  Google Scholar 

  33. Agatston AS, Janowitz WR, Hildner FJ, et al.: Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990, 15:827–832.

    Article  PubMed  CAS  Google Scholar 

  34. Burke AP, Weber DK, Kolodgie FD, et al.: Pathophysiology of calcium deposition in coronary arteries. Herz 2001, 26:239–244.

    Article  PubMed  CAS  Google Scholar 

  35. Greenland P, LaBree L, Azen SP, et al.: Coronary artery calcium score combined with framingham score for risk prediction in asymptomatic individuals. JAMA 2004, 291:210–215.

    Article  PubMed  CAS  Google Scholar 

  36. Pletcher MJ, Tice JA, Pignone M, Browner WS: Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med2004, 164:1285–1292.

    Article  PubMed  Google Scholar 

  37. Van Mieghem CA, McFadden EP, de Feyter PJ, et al.: Noninvasive detection of subclinical coronary atherosclerosis coupled with assessment of changes in plaque characteristics using novel invasive imaging modalities: the Integrated Biomarker and Imaging Study (IBIS). J Am Coll Cardiol 2006, 47:1134–1142.

    Article  PubMed  Google Scholar 

  38. Shah PK: Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 2003, 41:15S-22S.

    Article  PubMed  CAS  Google Scholar 

  39. Leber AW, Becker A, Knez A, et al.: Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 2006, 47:672–677.

    Article  PubMed  Google Scholar 

  40. Komatsu S, Hirayama A, Omori Y, et al.: Detection of coronary plaque by computed tomography with a novel plaque analysis system, ‘plaque map’, and comparison with intravascular ultrasound and angioscopy. Circ J 2005, 69:72–77.

    Article  PubMed  Google Scholar 

  41. Bengel FM: Atherosclerosis imaging on the molecular level. J Nucl Cardiol 2006, 13:111–118. Excellent overview of modern imaging modalities.

    Article  PubMed  Google Scholar 

  42. Carrio I, Pieri PL, Narula J, et al.: Noninvasive localization of human atherosclerotic lesions with indium 111-labeled monoclonal Z2D3 antibody specific for proliferating smooth muscle cells. J Nucl Cardiol 1998, 5:551–557.

    Article  PubMed  CAS  Google Scholar 

  43. Lees AM, Lees RS, Schoen FJ, et al.: Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 1988, 8:461–470.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson LL, Schofield L, Donahay T, et al.: 99mTc-annexin V imaging for in vivo detection of atherosclerotic lesions porcine coronary arteries. J Nucl Med 2005, 46:1186–1193.

    PubMed  Google Scholar 

  45. Dey D, Slomka P, Chien D, et al.: Direct quantitative in vivo comparison of calcified atherosclerotic plaque on vascular MRI and CT by multimodality image registration. J Magn Reson Imaging 2006, 23:345–354.

    Article  PubMed  Google Scholar 

  46. Yuan C, Mitsumori LM, Beach KW, Maravilla KR: Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 2001, 221:285–299.

    Article  PubMed  CAS  Google Scholar 

  47. Kampschulte A, Ferguson MS, Kerwin WS, et al.: Differentiation of intraplaque versus juxtaluminal hemorrhage/ thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 2004, 110:3239–3244.

    Article  PubMed  CAS  Google Scholar 

  48. Toussaint JF, Southern JF, Fuster V, Kantor HL: T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler Thromb Vasc Biol 1995, 15:1533–1542.

    PubMed  CAS  Google Scholar 

  49. Barkhausen J, Ebert W, Heyer C, et al.: Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging. Circulation 2003, 108:605–609.

    Article  PubMed  CAS  Google Scholar 

  50. Sirol M, Itskovich VV, Mani V, et al.: Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 2004, 109:2890–2896.

    Article  PubMed  CAS  Google Scholar 

  51. Ruehm SG, Corot C, Vogt P, et al.: Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001, 103:415–422.

    PubMed  CAS  Google Scholar 

  52. Kooi ME, Cappendijk VC, Cleutjens KB, et al.: Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003, 107:2453–2458.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Veinot MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, B.J.W., Veinot, J.P. What are the most useful and trustworthy noninvasive anatomic markers of existing vascular disease?. Current Cardiology Reports 8, 439–445 (2006). https://doi.org/10.1007/s11886-006-0102-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-006-0102-2

Keywords

Navigation