Skip to main content

Advertisement

Log in

AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis

  • Vascular Biology (H. Pownall, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this manuscript is to summarize the current understanding of the secreted APOA1 binding protein (AIBP), encoded by NAXE, in angiogenesis, hematopoiesis, and inflammation. The studies on AIBP illustrate a critical connection between lipid metabolism and the aforementioned endothelial and immune cell biology.

Recent Findings

AIBP dictates both developmental processes such as angiogenesis and hematopoiesis, and pathological events such as inflammation, tumorigenesis, and atherosclerosis.

Summary

Although cholesterol efflux dictates AIBP-mediated lipid raft disruption in many of the cell types, recent studies document cholesterol efflux-independent mechanism involving Cdc42-mediated cytoskeleton remodeling in macrophages. AIBP disrupts lipid rafts and impairs raft-associated VEGFR2 but facilitates non-raft–associated NOTCH1 signaling. Furthermore, AIBP can induce cholesterol biosynthesis gene SREBP2 activation, which in turn transactivates NOTCH1 and supports specification of hematopoietic stem and progenitor cells (HSPCs). In addition, AIBP also binds TLR4 and represses TLR4-mediated inflammation. In this review, we summarize the latest research on AIBP, focusing on its role in cholesterol metabolism and the attendant effects on lipid raft–regulated VEGFR2 and non-raft–associated NOTCH1 activation in angiogenesis, SREBP2-upregulated NOTCH1 signaling in hematopoiesis, and TLR4 signaling in inflammation and atherogenesis. We will discuss its potential therapeutic applications in angiogenesis and inflammation due to selective targeting of activated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Armstrong AJ, Gebre AK, Parks JS, Hedrick CC. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J Immunol. 2010;184(1):173–83.

    CAS  PubMed  Google Scholar 

  2. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008;134(1):97–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Westerterp M, Gourion-Arsiquaud S, Murphy AJ, Shih A, Cremers S, Levine RL, et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell. 2012;11(2):195–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Westerterp M, Tsuchiya K, Tattersall IW, Fotakis P, Bochem AE, Molusky MM, et al. Deficiency of ATP-binding cassette transporters A1 and G1 in endothelial cells accelerates atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2016;36(7):1328–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010;328(5986):1689–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sorci-Thomas MG, Thomas MJ. Microdomains, inflammation, and atherosclerosis. Circ Res. 2016;118(4):679–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.

    CAS  PubMed  Google Scholar 

  8. Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–45.

    CAS  PubMed  Google Scholar 

  9. Liu SY, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity. 2013;38(1):92–105.

    PubMed  Google Scholar 

  10. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A. 2000;97(22):12097–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728–31.

    CAS  PubMed  Google Scholar 

  12. Ritter M, Buechler C, Boettcher A, Barlage S, Schmitz-Madry A, Orso E, et al. Cloning and characterization of a novel apolipoprotein A-I binding protein, AI-BP, secreted by cells of the kidney proximal tubules in response to HDL or ApoA-I. Genomics. 2002;79(5):693–702.

    CAS  PubMed  Google Scholar 

  13. ••Fang L, Choi SH, Baek JS, Liu C, Almazan F, Ulrich F, et al. Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature. 2013;498(7452):118–22 This is the first study to show that AIBP-mediated cholesterol efflux disrupts lipid rafts, impairs raft-associated VEGFR2 signaling, and thereby limits angiogenesis.

  14. Mao R, Meng S, Gu Q, Araujo-Gutierrez R, Kumar S, Yan Q, et al. AIBP limits angiogenesis through gamma-secretase-mediated upregulation of notch signaling. Circ Res. 2017;120(11):1727–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang L, Miller YI. Regulation of lipid rafts, angiogenesis and inflammation by AIBP. Curr Opin Lipidol. 2019;30(3):218–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen H, Yin K. AIBP, inflammation, and atherosclerosis. J Lipid Res. 2018;59(7):1081–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Westerterp M. AIBP decreases atherogenesis by augmenting cholesterol efflux. Atherosclerosis. 2018;273:117–8.

    CAS  PubMed  Google Scholar 

  18. ••Gu Q, Yang X, Lv J, Zhang J, Xia B, Kim JD, et al. AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science. 2019;363(6431):1085–8 Findings from this study reveal a novel paradigm of SREBP2-transactivated NOTCH signaling in the regulation of hematopoiesis in development and in hyperlipidemia.

  19. • Low H, Mukhamedova N, Capettini LDSA, Xia Y, Carmichael I, Cody SH, et al. Cholesterol efflux-independent modification of lipid rafts by AIBP (apolipoprotein A-I binding protein). Arterioscler Thromb Vasc Biol. 2020;40(10):2346–2359. https://doi.org/10.1161/ATVBAHA.120.315037. This paper unveils that AIBP induces CDC42 activation, which disrupts lipid rafts via cytoskeletal change but not cholesterol efflux.

  20. Liao H, Langmann T, Schmitz G, Zhu Y. Native LDL upregulation of ATP-binding cassette transporter-1 in human vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002;22(1):127–32.

    CAS  PubMed  Google Scholar 

  21. Stefulj J, Panzenboeck U, Becker T, Hirschmugl B, Schweinzer C, Lang I, et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res. 2009;104(5):600–8.

    CAS  PubMed  Google Scholar 

  22. O'Connell BJ, Denis M, Genest J. Cellular physiology of cholesterol efflux in vascular endothelial cells. Circulation. 2004;110(18):2881–8.

    CAS  PubMed  Google Scholar 

  23. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000;289(5484):1524–9.

    CAS  PubMed  Google Scholar 

  24. Yamauchi Y, Iwamoto N, Rogers MA, Abe-Dohmae S, Fujimoto T, Chang CC, et al. Deficiency in the lipid exporter ABCA1 impairs retrograde sterol movement and disrupts sterol sensing at the endoplasmic reticulum. J Biol Chem. 2015;290(39):23464–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen J, Zhao L, Sun D, Narsinh K, Li C, Zhang Z, et al. Liver X receptor activation attenuates plaque formation and improves vasomotor function of the aortic artery in atherosclerotic ApoE(-/-) mice. Inflamm Res. 2012;61(12):1299–307.

    CAS  PubMed  Google Scholar 

  26. Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ. A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry. 2000;39(46):14113–20.

    CAS  PubMed  Google Scholar 

  27. Savion N, Kotev-Emeth S. Cholesterol efflux from and high-density-lipoproteins binding to cultured bovine vascular endothelial cells are higher than with vascular smooth muscle cells. Eur J Biochem. 1989;183(2):363–70.

    CAS  PubMed  Google Scholar 

  28. Jin X, Dimitriadis EK, Liu Y, Combs CA, Chang J, Varsano N, et al. Macrophages shed excess cholesterol in unique extracellular structures containing cholesterol microdomains. Arterioscler Thromb Vasc Biol. 2018;38(7):1504–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18(6):361–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu Y, Liao HL, Wang N, Yuan Y, Ma KS, Verna L, et al. Lipoprotein promotes caveolin-1 and Ras translocation to caveolae: role of cholesterol in endothelial signaling. Arterioscler Thromb Vasc Biol. 2000;20(11):2465–70.

    CAS  PubMed  Google Scholar 

  31. Fu Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D. Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J Biol Chem. 2004;279(14):14140–6.

    CAS  PubMed  Google Scholar 

  32. Le Lay S, Rodriguez M, Jessup W, Rentero C, Li Q, Cartland S, et al. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux. PLoS One. 2011;6(8):e23353.

    PubMed  PubMed Central  Google Scholar 

  33. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293(5539):2449–52.

    CAS  PubMed  Google Scholar 

  34. Fernandez-Hernando C, Yu J, Suarez Y, Rahner C, Davalos A, Lasuncion MA, et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 2009;10(1):48–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Das A, Brown MS, Anderson DD, Goldstein JL, Radhakrishnan A. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife. 2014;3. https://doi.org/10.7554/eLife.02882.

  36. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stahl A, Sapieha P, Connor KM, Sangiovanni JP, Chen J, Aderman CM, et al. Short communication: PPAR gamma mediates a direct antiangiogenic effect of omega 3-PUFAs in proliferative retinopathy. Circ Res. 2010;107(4):495–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Noghero A, Perino A, Seano G, Saglio E, Lo Sasso G, Veglio F, et al. Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2. Arterioscler Thromb Vasc Biol. 2012;32(9):2280–8.

    CAS  PubMed  Google Scholar 

  39. Zhou RH, Yao M, Lee TS, Zhu Y, Martins-Green M, Shyy JY. Vascular endothelial growth factor activation of sterol regulatory element binding protein: a potential role in angiogenesis. Circ Res. 2004;95(5):471–8.

    CAS  PubMed  Google Scholar 

  40. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A, Kim BM, et al. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab. 2013;17(4):549–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kappus MS, Murphy AJ, Abramowicz S, Ntonga V, Welch CL, Tall AR, et al. Activation of liver X receptor decreases atherosclerosis in Ldlr(-)/(-) mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler Thromb Vasc Biol. 2014;34(2):279–84.

    CAS  PubMed  Google Scholar 

  42. Amsalem M, Poilbout C, Ferracci G, Delmas P, Padilla F. Membrane cholesterol depletion as a trigger of Nav1.9 channel-mediated inflammatory pain. EMBO J. 2018;37(8). https://doi.org/10.15252/embj.201797349.

  43. Zhu X, Westcott MM, Bi X, Liu M, Gowdy KM, Seo J, et al. Myeloid cell-specific ABCA1 deletion protects mice from bacterial infection. Circ Res. 2012;111(11):1398–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, et al. Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27(4):813–8.

    CAS  PubMed  Google Scholar 

  45. van Oostrom O, Nieuwdorp M, Westerweel PE, Hoefer IE, Basser R, Stroes ES, et al. Reconstituted HDL increases circulating endothelial progenitor cells in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2007;27(8):1864–5.

    PubMed  Google Scholar 

  46. Theofilatos D, Fotakis P, Valanti E, Sanoudou D, Zannis V, Kardassis D. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism. 2018;87:36–47.

    CAS  PubMed  Google Scholar 

  47. Cannizzo CM, Adonopulos AA, Solly EL, Ridiandries A, Vanags LZ, Mulangala J, et al. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia. FASEB J. 2018;32(6):2911–22.

    CAS  PubMed  Google Scholar 

  48. Zamanian-Daryoush M, Lindner D, Tallant TC, Wang Z, Buffa J, Klipfell E, et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J Biol Chem. 2013;288(29):21237–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Prosser HC, Tan JT, Dunn LL, Patel S, Vanags LZ, Bao S, et al. Multifunctional regulation of angiogenesis by high-density lipoproteins. Cardiovasc Res. 2014;101(1):145–54.

    CAS  PubMed  Google Scholar 

  50. Cartier A, Leigh T, Liu CH, Hla T. Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy. Proc Natl Acad Sci U S A. 2020;117(6):3157–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A. 2011;108(23):9613–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu M, Allegood J, Zhu X, Seo J, Gebre AK, Boudyguina E, et al. Uncleaved ApoM signal peptide is required for formation of large ApoM/sphingosine 1-phosphate (S1P)-enriched HDL particles. J Biol Chem. 2015;290(12):7861–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yanagida K, Hla T. Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu Rev Physiol. 2017;79:67–91.

    CAS  PubMed  Google Scholar 

  54. Tatematsu S, Francis SA, Natarajan P, Rader DJ, Saghatelian A, Brown JD, et al. Endothelial lipase is a critical determinant of high-density lipoprotein-stimulated sphingosine 1-phosphate-dependent signaling in vascular endothelium. Arterioscler Thromb Vasc Biol. 2013;33(8):1788–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin F, Hagemann N, Sun L, Wu J, Doeppner TR, Dai Y, et al. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation. Angiogenesis. 2018;21(2):381–94.

    CAS  PubMed  Google Scholar 

  56. Zhu L, Parker M, Enemchukwu N, Shen M, Zhang G, Yan Q, et al. Combination of apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal neovascularization in mice. Commun Biol. 2020;3(1):386.

    PubMed  PubMed Central  Google Scholar 

  57. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, et al. Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol. 2019;73(23):2990–3002.

    CAS  PubMed  Google Scholar 

  59. Zhang T, Wang Q, Wang Y, Wang J, Su Y, Wang F, et al. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux. J Transl Med. 2019;17(1):161.

    PubMed  PubMed Central  Google Scholar 

  60. Williams CK, Li JL, Murga M, Harris AL, Tosato G. Up-regulation of the Notch ligand delta-like 4 inhibits VEGF-induced endothelial cell function. Blood. 2006;107(3):931–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li JL, Sainson RC, Oon CE, Turley H, Leek R, Sheldon H, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011;71(18):6073–83.

    CAS  PubMed  Google Scholar 

  62. Siekmann AF, Covassin L, Lawson ND. Modulation of VEGF signalling output by the Notch pathway. Bioessays. 2008;30(4):303–13.

    CAS  PubMed  Google Scholar 

  63. Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell. 2009;16(2):196–208.

    CAS  PubMed  Google Scholar 

  64. Urano Y, Hayashi I, Isoo N, Reid PC, Shibasaki Y, Noguchi N, et al. Association of active gamma-secretase complex with lipid rafts. J Lipid Res. 2005;46(5):904–12.

    CAS  PubMed  Google Scholar 

  65. Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol. 2003;160(1):113–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shobab LA, Hsiung GY, Feldman HH. Cholesterol in Alzheimer’s disease. Lancet Neurol. 2005;4(12):841–52.

    CAS  PubMed  Google Scholar 

  67. Park IH, Hwang EM, Hong HS, Boo JH, Oh SS, Lee J, et al. Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging. 2003;24(5):637–43.

    CAS  PubMed  Google Scholar 

  68. Chang TY, Yamauchi Y, Hasan MT, Chang C. Cellular cholesterol homeostasis and Alzheimer’s disease. J Lipid Res. 2017;58(12):2239–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Karten B, Vance DE, Campenot RB, Vance JE. Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann-Pick C1-deficient neurons. J Neurochem. 2002;83(5):1154–63.

    CAS  PubMed  Google Scholar 

  70. Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, et al. Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem. 2005;280(27):25892–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol. 2004;167(5):953–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen Z, Wen L, Martin M, Hsu CY, Fang L, Lin FM, et al. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation. 2015;131(9):805–14.

    CAS  PubMed  Google Scholar 

  73. Yeh M, Cole AL, Choi J, Liu Y, Tulchinsky D, Qiao JH, et al. Role for sterol regulatory element-binding protein in activation of endothelial cells by phospholipid oxidation products. Circ Res. 2004;95(8):780–8.

    CAS  PubMed  Google Scholar 

  74. Kim JY, Garcia-Carbonell R, Yamachika S, Zhao P, Dhar D, Loomba R, et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell. 2018;175(1):133–45 e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mayneris-Perxachs J, Puig J, Burcelin R, Dumas ME, Barton RH, Hoyles L, et al. The APOA1bp-SREBF-NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clin Nutr. 2020;39:3408–18.

    CAS  PubMed  Google Scholar 

  76. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A. 2003;100(21):12027–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rong S, Cortes VA, Rashid S, Anderson NN, McDonald JG, Liang G, et al. Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice. Elife. 2017;6. https://doi.org/10.7554/eLife.25015

  78. Umemoto T, Han CY, Mitra P, Averill MM, Tang C, Goodspeed L, et al. Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ Res. 2013;112(10):1345–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen DH, Taub D. Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood. 2002;99(12):4298–306.

    CAS  PubMed  Google Scholar 

  80. Choi SH, Wallace AM, Schneider DA, Burg E, Kim J, Alekseeva E, et al. AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation. JCI Insight. 2018;3(16). https://doi.org/10.1172/jci.insight.120519.

  81. Schneider DA, Choi SH, Agatisa-Boyle C, Zhu L, Kim J, Pattison J, et al. AIBP protects against metabolic abnormalities and atherosclerosis. J Lipid Res. 2018;59(5):854–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang M, Li L, Xie W, Wu JF, Yao F, Tan YL, et al. Apolipoprotein A-1 binding protein promotes macrophage cholesterol efflux by facilitating apolipoprotein A-1 binding to ABCA1 and preventing ABCA1 degradation. Atherosclerosis. 2016;248:149–59.

    CAS  PubMed  Google Scholar 

  83. Woller SA, Choi SH, An EJ, Low H, Schneider DA, Ramachandran R, et al. Inhibition of neuroinflammation by AIBP: spinal effects upon facilitated pain states. Cell Rep. 2018;23(9):2667–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Harari OA, Alcaide P, Ahl D, Luscinskas FW, Liao JK. Absence of TRAM restricts Toll-like receptor 4 signaling in vascular endothelial cells to the MyD88 pathway. Circ Res. 2006;98(9):1134–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Miller YI, Shyy JY. Context-dependent role of oxidized lipids and lipoproteins in inflammation. Trends Endocrinol Metab. 2017;28(2):143–52.

    CAS  PubMed  Google Scholar 

  86. Ding Y, Subramanian S, Montes VN, Goodspeed L, Wang S, Han C, et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2012;32(7):1596–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458(7242):1191–5.

    CAS  PubMed  Google Scholar 

  88. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013;309(11):1154–62.

    CAS  PubMed  Google Scholar 

  89. Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, et al. Apolipoprotein A-1 binding protein inhibits inflammatory signaling pathways by binding to apolipoprotein A-1 in THP-1 macrophages. Circ J. 2018;82(5):1396–404.

    CAS  PubMed  Google Scholar 

  90. Zhang M, Zhao GJ, Yao F, Xia XD, Gong D, Zhao ZW, et al. AIBP reduces atherosclerosis by promoting reverse cholesterol transport and ameliorating inflammation in apoE(-/-) mice. Atherosclerosis. 2018;273:122–30.

    CAS  PubMed  Google Scholar 

  91. Shumilin IA, Cymborowski M, Chertihin O, Jha KN, Herr JC, Lesley SA, et al. Identification of unknown protein function using metabolite cocktail screening. Structure. 2012;20(10):1715–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dubrovsky L, Ward A, Choi SH, Pushkarsky T, Brichacek B, Vanpouille C, et al. Inhibition of HIV replication by apolipoprotein A-I binding protein targeting the lipid rafts. mBio. 2020;11(1). https://doi.org/10.1128/mBio.02956-19.

  93. Choi SH, Kim KY, Perkins GA, Phan S, Edwards G, Xia Y, et al. AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biol. 2020;37:101703.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. de Aguiar Vallim TQ, Lee E, Merriott DJ, Goulbourne CN, Cheng J, Cheng A, et al. ABCG1 regulates pulmonary surfactant metabolism in mice and men. J Lipid Res. 2017;58(5):941–54.

    PubMed  PubMed Central  Google Scholar 

  95. Becker-Kettern J, Paczia N, Conrotte JF, Zhu C, Fiehn O, Jung PP, et al. NAD(P)HX repair deficiency causes central metabolic perturbations in yeast and human cells. FEBS J. 2018;285(18):3376–401.

    CAS  PubMed  Google Scholar 

  96. Kremer LS, Danhauser K, Herebian D, Petkovic Ramadza D, Piekutowska-Abramczuk D, Seibt A, et al. NAXE mutations disrupt the cellular NAD(P)HX repair system and cause a lethal neurometabolic disorder of early childhood. Am J Hum Genet. 2016;99(4):894–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sorci-Thomas MG, Thomas MJ. AIBP, NAXE, and angiogenesis: what’s in a name? Circ Res. 2017;120(11):1690–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Niehaus TD, Elbadawi-Sidhu M, Huang L, Prunetti L, Gregory JF, 3rd, de Crecy-Lagard V, et al. Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function. Biosci Rep. 2018;38(3). https://doi.org/10.1042/BSR20180223.

Download references

Funding

This project was supported by grants (NIH HL132155 and AHA 18TPA34250009) to L.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longhou Fang.

Ethics declarations

Conflict of Interest

Longhou Fang has a pending patent on Methods for the treatment of abnormal hematopoiesis and blood diseases using APOA-I binding protein.

The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted and ethical approval was obtained from IACUC, AUP-0514-0027, and AUP-0718-0038.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Luo, J. & Fang, L. AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis. Curr Atheroscler Rep 23, 1 (2021). https://doi.org/10.1007/s11883-020-00899-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00899-9

Keywords

Navigation