Skip to main content

Advertisement

Log in

Update on APOA5 Genetics: Toward a Better Understanding of Its Physiological Impact

  • Genetics and Genomics (A. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review is intended to summarize the genetic studies published during the last 3 years that help us understand the physiology of apoAV and its clinical implications.

Recent Findings

APOA5 is probably the gene with the strongest effect on triglyceride (TG) metabolism. APOA5 is almost exclusively expressed in the liver, and its product apoAV has a very low circulating concentration. New physiological roles of apoAV have been recently elucidated, such as control of chylomicron production in the intestine and TG accumulation in adipose tissue.

The key role of APOA5 in TG metabolism has been largely shown through genetic studies in association with either severe or moderate hypertriglyceridemia. Studies suggest that APOA5 variants affect not only total TG concentrations but also the entire lipoprotein subclass distribution, shifting them toward atherogenic dyslipidemia in high-risk subjects. Environmental interactions and epigenetic factors are also crucial in regulating these processes. Delineation of the mechanisms involved in the transcriptional control of the gene, combined with determination of biological significance of the SNPs in the APOA5 locus, would help to fully understand the effect of APOA5 on TGs.

Summary

In summary, APOA5 variants cause hypertriglyceridemia. In high cardiovascular risk patients (e.g., patients with metabolic syndrome or type 2 diabetes), APOA5 variants elevate TG levels and shift the entire lipoprotein subclass distribution toward atherogenic dyslipidemia. At a physiological level, apoAV seems to encompass more roles than those initially suggested after its discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science. 2001;294:169–73.

    Article  CAS  PubMed  Google Scholar 

  2. van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, et al. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem. 2001;276:44512–20.

    Article  PubMed  Google Scholar 

  3. Shu X, Chan J, Ryan RO, Forte TM. Apolipoprotein A-V association with intracellular lipid droplets. J Lipid Res. 2007;48:1445–50.

    Article  CAS  PubMed  Google Scholar 

  4. Shu X, Nelbach L, Ryan RO, Forte TM. Apolipoprotein A-V associates with intrahepatic lipid droplets and influences triglyceride accumulation. Biochim Biophys Acta - Mol Cell Biol Lipids. 2010;1801:605–8.

    Article  CAS  Google Scholar 

  5. Shu X, Nelbach L, Weinstein MM, Burgess BL, Beckstead JA, Young SG, et al. Intravenous injection of apolipoprotein A-V reconstituted high-density lipoprotein decreases hypertriglyceridemia in apoav−/− mice and requires glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1. Arterioscler Thromb Vasc Biol. 2010;30:2504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry. 2007;46:3896–904.

    Article  CAS  PubMed  Google Scholar 

  7. Gonzales JC, Gordts PLSM, Foley EM, Esko JD. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans. J Clin Invest. 2013;123:2742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, et al. Apolipoprotein AV accelerates plasma hydrolysis of triglyceriderich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem. 2005;280:21553–60.

    Article  CAS  PubMed  Google Scholar 

  9. Forte TM, Ryan RO. Apolipoprotein A5: extracellular and intracellular roles in triglyceride metabolism. Curr Drug Targets. 2015;16:1274–80.

    Article  CAS  PubMed  Google Scholar 

  10. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.

    Article  PubMed  Google Scholar 

  11. Ramasamy I. Update on the molecular biology of dyslipidemias. Clin Chim Acta. 2016;454:143–85.

    Article  CAS  PubMed  Google Scholar 

  12. Surendran RP, Visser ME, Heemelaar S, Wang J, Peter J, Defesche JC, et al. Mutations in LPL, APOC2 , APOA5 , GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J Intern Med. 2012;272:185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. •• Do R, Stitziel NO, Won H-H, Jørgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6. By the use of exome sequence in a large sample of cases and controls, this study clarifies that APOA5 contributes to MI risk.

    Article  CAS  PubMed  Google Scholar 

  14. Martín-Campos JM, Julve J, Roig R, Martínez S, Errico TL, Martínez-Couselo S, et al. Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency. Clin Chim Acta. 2014;429:61–8.

    Article  PubMed  Google Scholar 

  15. Chokshi N, Blumenschein SD, Ahmad Z, Garg A. Genotype-phenotype relationships in patients with type I hyperlipoproteinemia. J. Clin. Lipidol. 2014;8:287–95.

    Article  PubMed  Google Scholar 

  16. Hooper AJ, Kurtkoti J, Hamilton-Craig I, Burnett JR. Clinical features and genetic analysis of three patients with severe hypertriglyceridaemia. Ann Clin Biochem. 2014;51:485–9.

    Article  PubMed  Google Scholar 

  17. Mendoza-Barberá E, Julve J, Nilsson SK, Lookene A, Martín-Campos JM, Roig R, et al. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia. J Lipid Res. 2013;54:649–61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arai M, Nishimura A, Mori Y, Ebara T, Okubo M. Hypertriglyceridemia and pancreatitis in a patient with apolipoprotein E7 (p.[E244K; E245K])/E4. Clin. Chim. Acta. 2014;436:188–92.

    CAS  Google Scholar 

  19. Xie S-L, Chen T-Z, Huang X-L, Chen C, Jin R, Huang Z-M, et al. Genetic variants associated with gestational hypertriglyceridemia and pancreatitis. PLoS One. 2015;10:e0129488.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang Y-J, Lin Y-L, Chiang C-I, Yen C-T, Lin S-W, Kao J-T. Functional importance of apolipoprotein A5 185G in the activation of lipoprotein lipase. Clin Chim Acta. 2012;413:246–50.

    Article  CAS  PubMed  Google Scholar 

  21. Shou W, Wang Y, Xie F, Wang B, Yang L, Wu H, et al. A functional polymorphism affecting the APOA5 gene expression is causally associated with plasma triglyceride levels conferring coronary atherosclerosis risk in Han Chinese population. Biochim Biophys Acta. 1842;2014:2147–54.

    Google Scholar 

  22. Palmen J, Smith AJP, Dorfmeister B, Putt W, Humphries SE, Talmud PJ. The functional interaction on in vitro gene expression of APOA5 SNPs, defining haplotype APOA5*2, and their paradoxical association with plasma triglyceride but not plasma apoAV levels. Biochim Biophys Acta - Mol Basis Dis. 2008;1782:447–52.

    Article  CAS  Google Scholar 

  23. Talmud PJ, Palmen J, Putt W, Lins L, Humphries SE. Determination of the functionality of common APOA5 polymorphisms. J Biol Chem. 2005;280:28215–20.

    Article  CAS  PubMed  Google Scholar 

  24. Albers K, Schlein C, Wenner K, Lohse P, Bartelt A, Heeren J, et al. Homozygosity for a partial deletion of apoprotein A-V signal peptide results in intracellular missorting of the protein and chylomicronemia in a breast-fed infant. Atherosclerosis. 2014;233:97–103.

    Article  CAS  PubMed  Google Scholar 

  25. Thériault S, Don-Wauchope A, Chong M, Lali R, Morrison KM, Paré G. Frameshift mutation in the APOA5 gene causing hypertriglyceridemia in a Pakistani family: management and considerations for cardiovascular risk. J Clin Lipidol. 2016;10:1272–7.

    Article  PubMed  Google Scholar 

  26. Adiels M, Olofsson S-OO, Taskinen M-RR, Borén J, Boren J. Diabetic dyslipidaemia. Curr Opin Lipidol. 2006;17:238–46.

    Article  CAS  PubMed  Google Scholar 

  27. Guardiola M, Cofán M, de Castro-Oros I, Cenarro A, Plana N, Talmud PJ, et al. APOA5 variants predispose hyperlipidemic patients to atherogenic dyslipidemia and subclinical atherosclerosis. Atherosclerosis. 2015;240:98–104.

    Article  CAS  PubMed  Google Scholar 

  28. Fallah M-S, Sedaghatikhayat B, Guity K, Akbari F, Azizi F, Daneshpour MS. The relation between metabolic syndrome risk factors and genetic variations of apolipoprotein V in relation with serum triglyceride and HDL-C level. Arch Iran Med. 2016;19:46–50.

    PubMed  Google Scholar 

  29. Kim YR, Hong S-H. Association of apolipoprotein A5 Gene polymorphisms with metabolic syndrome in the Korean population. Genet Test Mol Biomarkers. 2016;20:130–6.

    Article  CAS  PubMed  Google Scholar 

  30. Song KH, Cha S, Yu S-G, Yu H, Oh SA, Kang N-S. Association of apolipoprotein A5 Gene −1131T>C polymorphism with the risk of metabolic syndrome in Korean subjects. Biomed Res Int. 2013;2013:1–7.

    Google Scholar 

  31. Cha S, Yu H, Park AY, Song KH. Effects of apolipoprotein A5 haplotypes on the ratio of triglyceride to high-density lipoprotein cholesterol and the risk for metabolic syndrome in Koreans. Lipids Health Dis. 2014;13:45.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu C, Bai R, Zhang D, Li Z, Zhu H, Lai M, et al. Effects of APOA5 -1131T>C (rs662799) on fasting plasma lipids and risk of metabolic syndrome: evidence from a case-control study in China and a meta-analysis. Crawford DC, editor. PLoS One. 2013;8:e56216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carty CL, Bhattacharjee S, Haessler J, Cheng I, Hindorff LA, Aroda V, et al. Analysis of metabolic syndrome components in >15 000 african americans identifies pleiotropic variants: results from the population architecture using genomics and epidemiology study. Circ Cardiovasc Genet. 2014;7:505–13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nakatochi M, Ushida Y, Yasuda Y, Yoshida Y, Kawai S, Kato R, et al. Identification of an interaction between VWF rs7965413 and platelet count as a novel risk marker for metabolic syndrome: an extensive search of candidate polymorphisms in a case-control study. Garcia de Frutos P, editor. PLoS One. 2015;10:e0117591.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zaki M, Amr K. Apolipoprotein A5 T-1131C variant and risk for metabolic syndrome in obese adolescents. Gene. 2014;534:44–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wu Y, Waite LL, Jackson AU, Sheu WHH, Buyske S, Absher D, et al. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained. PLoS Genet. 2013;9.

  37. Cole CB, Nikpay M, Lau P, AFR S, Davies RW, Wells GA, et al. Adiposity significantly modifies genetic risk for dyslipidemia. J Lipid Res. 2014;55:2416–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu Y, Yu Y, Zhao T, Wang S, Fu Y, Qi Y, et al. Interactions of environmental factors and APOA1-APOC3-APOA4-APOA5 gene cluster gene polymorphisms with metabolic syndrome. PLoS One. 2016;11:1–17.

    Google Scholar 

  39. Son KY, Son H-Y, Chae J, Hwang J, Jang S, Yun JM, et al. Genetic association of APOA5 and APOE with metabolic syndrome and their interaction with health-related behavior in Korean men. Lipids Health Dis. 2015;14:105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tang L, Wang L, Liao Q, Wang Q, Xu L, Bu S, et al. Genetic associations with diabetes: meta-analyses of 10 candidate polymorphisms. PLoS One. 2013;8:1–10.

    Article  Google Scholar 

  41. Yin YW, Sun QQ, Wang PJ, Qiao L, Hu AM, Liu HL, et al. Genetic polymorphism of apolipoprotein A5 gene and susceptibility to type 2 diabetes mellitus: a meta-analysis of 15,137 subjects. PLoS One. 2014;9.

  42. Juntti-Berggren L, Ali Y, Berggren P-O. The pancreatic β-cell in deadly encounter with apolipoprotein CIII. Cell Cycle. 2015;14:2715–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adams JN, Raffield LM, Freedman BI, Langefeld CD, Ng MC, Carr J, et al. Analysis of common and coding variants with cardiovascular disease in the diabetes heart study. Cardiovasc Diabetol. 2014;13:77.

    Article  PubMed  PubMed Central  Google Scholar 

  44. van de Woestijne AP, van der Graaf Y, de Bakker PIW, Asselbergs FW, Spiering W, Visseren FLJ, et al. Rs964184 (APOA5-A4-C3-A1) is related to elevated plasma triglyceride levels, but not to an increased risk for vascular events in patients with clinically manifest vascular disease. Calabresi L, editor. PLoS One. 2014;9:e101082.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li Y-Y, Wu X-Y, Xu J, Qian Y, Zhou C-W, Wang B. Apo A5 -1131T/C, FgB -455G/A, −148C/T, and CETP TaqIB gene polymorphisms and coronary artery disease in the Chinese population: a meta-analysis of 15,055 subjects. Mol Biol Rep. 2013;40:1997–2014.

    Article  CAS  PubMed  Google Scholar 

  46. Ye H, Zhou A, Hong Q, Tang L, Xu X, Xin Y, et al. Positive association between APOA5 rs662799 polymorphism and coronary heart disease: a case-control study and meta-analysis. Sengupta S, editor. PLoS One. 2015;10:e0135683.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cui G, Li Z, Li R, Huang J, Wang H, Zhang L, et al. A functional variant in APOA5/A4/C3/A1 gene cluster contributes to elevated triglycerides and severity of CAD by interfering with microRNA 3201 binding efficiency. J Am Coll Cardiol. 2014;64:267–77.

    Article  CAS  PubMed  Google Scholar 

  48. Jørgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjærg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34:1826–33.

    Article  PubMed  Google Scholar 

  49. • Ganna A, Salihovic S, Sundström J, Broeckling CD, Hedman AK, Magnusson PKE, et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. Gibson G, editor. PLoS Genet. 2014;10:e1004801. This non-targeted metabolomic study describes MG 18:2 as capable of discriminating between CHD and non-CHD associated with the ZNF259/APOA5 region.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Global Lipids Genetics Consortium CJ, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  Google Scholar 

  52. Oliva I, Guardiola M, Vallvé J-C, Ibarretxe D, Plana N, Masana L, et al. APOA5 genetic and epigenetic variability jointly regulate circulating triacylglycerol levels. Clin Sci (Lond). 2016;130:2053–9.

    Article  Google Scholar 

  53. Lai C-Q, Wojczynski MK, Parnell LD, Hidalgo BA, Irvin MR, Aslibekyan S, et al. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J Lipid Res. 2016;57:2200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dekkers KF, van Iterson M, Slieker RC, Moed MH, Bonder MJ, van Galen M, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17:138.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 2015;8:334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moen EL, Zhang X, Mu W, Delaney SM, Wing C, McQuade J, et al. Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics. 2013;194:987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Radhakrishna U, Albayrak S, Alpay-Savasan Z, Zeb A, Turkoglu O, Sobolewski P, et al. Genome-wide DNA methylation analysis and epigenetic variations associated with Congenital Aortic Valve Stenosis (AVS). PLoS One. 2016;11:1–13.

    Article  Google Scholar 

  58. Arsenault BJ, Dubé MP, Brodeur MR, De Oliveira Moraes AB, Lavoie V, Kernaleguen AE, et al. Evaluation of links between high-density lipoprotein genetics, functionality, and aortic valve stenosis risk in humans. Arterioscler Thromb Vasc Biol. 2014;34:457–62.

    Article  CAS  PubMed  Google Scholar 

  59. Guardiola M, Oliva I, Guillaumet A, Martín-Trujillo Á, Rosales R, Vallvé JC, et al. Tissue-specific DNA methylation profiles regulate liver-specific expression of the APOA1/C3/A4/A5 cluster and can be manipulated with demethylating agents on intestinal cells. Atherosclerosis. 2014;237:528–35.

    Article  CAS  PubMed  Google Scholar 

  60. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383:1990–8.

    Article  CAS  PubMed  Google Scholar 

  61. Danese E, Minicozzi AM, Benati M, Montagnana M, Paviati E, Salvagno GL, et al. Epigenetic alteration: new insights moving from tissue to plasma—the example of PCDH10 promoter methylation in colorectal cancer. Br J Cancer. 2013;109:807–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Caussy C, Charrière S, Marçais C, Di Filippo M, Sassolas A, Delay M, et al. An APOA5 3′ UTR variant associated with plasma triglycerides triggers APOA5 downregulation by creating a functional miR-485-5p binding site. Am J Hum Genet. 2014;94:129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang LS, Xu M, Yang Q, Ryan RO, Howles P, Tso P. Apolipoprotein A-V deficiency enhances chylomicron production in lymph fistula mice. Am. J. Physiol. Gastrointest Liver Physiol. 2015;308:G634–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rudkowska I, Ouellette C, Dewailly E, Hegele RA, Boiteau V, Dubé-Linteau A, et al. Omega-3 fatty acids, polymorphisms and lipid related cardiovascular disease risk factors in the Inuit population. Nutr Metab. 2013;10:1–9.

    Article  Google Scholar 

  65. Guardiola M, Alvaro A, Vallve JC, Rosales R, Sola R, Girona J, et al. APOA5 gene expression in the human intestinal tissue and its response to in vitro exposure to fatty acid and fibrate. Nutr Metab Cardiovasc Dis. 2012;22:756–62.

    Article  CAS  PubMed  Google Scholar 

  66. • Zhang LS, Sato H, Yang Q, Ryan RO, Wang DQ-H, Howles PN, et al. Apolipoprotein A-V is present in bile and its secretion increases with lipid absorption in Sprague-Dawley rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;ajpgi.00227.2015. Provides data suggesting that in response to dietary fat intake, hepatic apoAV may reach the gut via bile salts.

  67. Volkov P, Olsson AH, Gillberg L, Jørgensen SW, Brøns C, Eriksson KF, et al. A genome-wide mQTL analysis in human adipose tissue identifies genetic variants associated with DNA methylation, gene expression and metabolic traits. PLoS One. 2016;11:1–31.

    Article  Google Scholar 

  68. Lim HH, Choi M, Kim JY, Lee JH, Kim OY. Increased risk of obesity related to total energy intake with the APOA5-1131T > C polymorphism in Korean premenopausal women. Nutr Res. 2014;34:827–36.

    Article  CAS  PubMed  Google Scholar 

  69. Domínguez-Reyes T, Astudillo-López CC, Salgado-Goytia L, Muñoz-Valle JF, Salgado-Bernabé AB, Guzmán-Guzmán IP, et al. Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects. Lipids Health Dis. 2015;14:106.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhu W-F, Wang C-L, Liang L, Shen Z, Fu J-F, Liu P-N, et al. Triglyceride-raising APOA5 genetic variants are associated with obesity and non-HDL-C in Chinese children and adolescents. Lipids Health Dis. 2014;13:93.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zheng XY, Zhao SP, Yu BL, Wu CL, Liu L. Apolipoprotein A5 internalized by human adipocytes modulates cellular triglyceride content. Biol Chem. 2012;393:161–7.

    Article  CAS  PubMed  Google Scholar 

  72. Below JE, Parra EJ, Gamazon ER, Torres J, Krithika S, Candille S, et al. Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects, and tissue-specific enrichment of eQTLs. Sci Rep. 2016;6:19429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Clifford AJ, Rincon G, Owens JE, Medrano JF, Moshfegh AJ, Baer DJ, et al. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults. Lipids Health Dis. 2013;12:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferreira CN, Carvalho MG, Fernandes AP, Santos IR, Rodrigues KF, Lana AMQ, et al. The polymorphism -1131T>C in apolipoprotein A5 gene is associated with dyslipidemia in Brazilian subjects. Gene. 2013;516:171–5.

    Article  CAS  PubMed  Google Scholar 

  75. Furuya TK, Chen ES, Ota VK, Mazzotti DR, Ramos LR, Cendoroglo MS, et al. Association of APOA1 and APOA5 polymorphisms and haplotypes with lipid parameters in a Brazilian elderly cohort. Genet Mol Res. 2013;12:3495–9.

    Article  CAS  PubMed  Google Scholar 

  76. Ou HJ, Huang G, Liu W, Ma XL, Wei Y, Zhou T, et al. Relationship of the APOA5/A4/C3/A1 gene cluster and APOB gene polymorphisms with dyslipidemia. Genet Mol Res. 2015;14:9277–90.

    Article  CAS  PubMed  Google Scholar 

  77. Ram R, Wakil SM, Muiya NP, Andres E, Mazhar N, Hagos S, et al. A common variant association study in ethnic Saudi Arabs reveals novel susceptibility loci for hypertriglyceridemia. Clin Genet. 2017;91:371–8.

    Article  CAS  PubMed  Google Scholar 

  78. Suárez-Sánchez F, Klunder-Klunder M, Valladares-Salgado A, Gómez-Zamudio J, Peralta-Romero J, Meyre D, et al. APOA5 and APOA1 polymorphisms are associated with triglyceride levels in Mexican children. Pediatr. Obes. 2016.

  79. Li S, Hu B, Wang Y, Wu D, Jin L, Wang X. Influences of APOA5 variants on plasma triglyceride levels in Uyghur population. PLoS One. 2014;9:1–8.

    Google Scholar 

  80. Zhou J, Xu L, Huang RS, Huang Y, Le Y, Jiang D, et al. Apolipoprotein A5 gene variants and the risk of coronary heart disease: a case-control study and meta-analysis. Mol Med Rep. 2013;8:1175–82.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our collaborators Iris Oliva and Marina Rodriguez for their assistance in the elaboration of the figure describing apoAV metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Ribalta.

Ethics declarations

Conflict of Interest

Montse Guardiola and Josep Ribalta declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All the studies by Montse Guardiola and Josep Ribalta involving human subjects were performed after approval was granted by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Additional information

This article is part of the Topical Collection on Genetics and Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardiola, M., Ribalta, J. Update on APOA5 Genetics: Toward a Better Understanding of Its Physiological Impact. Curr Atheroscler Rep 19, 30 (2017). https://doi.org/10.1007/s11883-017-0665-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-017-0665-y

Keywords

Navigation