Skip to main content

Advertisement

Log in

Cardiometabolic Effects of Glucagon-Like Peptide-1 Agonists

Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the leading cause of death among adults in the USA. Both type 1 (T1DM) and type 2 diabetes mellitus (T2DM) are known risk factors for cardiovascular disease. Despite the development of numerous effective anti-glycemic therapies, we have been unable to completely mitigate cardiovascular risk with glucose lowering alone, and prevention of cardiovascular disease in patients with diabetes is primarily achieved with the use of medications that address other risk factors such as anti-hypertensives or statins. Glucagon-like peptide-1 (GLP-1) is a key hormone in the pathophysiology of diabetes. GLP-1 agonists have been recently approved for the treatment of T2DM as well as for chronic weight management. In this review, we aim to explore the effects of GLP-1 agonists on cardiovascular health with a focus on cardiometabolic variables and cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CDC. Deaths: Final data for 2013. 2014; Available from: http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. Accessed 30 Oct 2015.

  2. Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. Lancet. 1999;353:89–92.

    Article  CAS  PubMed  Google Scholar 

  3. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990 – 2013 : a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;385(9963):117–71.

    PubMed Central  Google Scholar 

  4. Yusuf S, Reddy S, Ôunpuu S, Anand S. Global burden of cardiovascular diseases. Circulation. 2001;104(C):2746–53.

    Article  CAS  PubMed  Google Scholar 

  5. Okrainec K, Banerjee DK, Eisenberg MJ, Montreal MPH. Coronary artery disease in the developing world. Am Heart J. 2004;148:7–15.

    Article  PubMed  Google Scholar 

  6. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129(25 SUPPL 1):1–49.

    Google Scholar 

  7. Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;6:CD008143.

    PubMed  Google Scholar 

  8. Ferrannini E, Defronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J. 2015;36:2288–96.

    Article  PubMed  Google Scholar 

  9. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Article  Google Scholar 

  10. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. Recent large-scale RCT in which empagliflozin, an inhibitor of sodium-glucose cotransporter 2 approved for type 2 diabetes mellitus, was associated with a lower rate of a composite outcome consisting of death from cardiovascular causes, nonfatal MI and nonfatal stroke, as well as a lower rate of all-cause mortality. These results are notable given the shortage of convincing evidence that antiglycemic therapy significantly improves macrovascular outcomes.

    Article  PubMed  Google Scholar 

  11. Shyangdan D, Royle P, Clar C, Sharma P, Waugh N, Snaith A. Glucagon-like peptide analogues for type 2 diabetes mellitus (review). Cochrane Database Syst Rev. 2011;10:CD006423.

  12. Thompson AM, Trujillo JM. Dulaglutide: the newest GLP-1 receptor agonist for the management of type 2 diabetes. Ann Pharmacother. 2015;49(3):351–9.

    Article  CAS  PubMed  Google Scholar 

  13. Nauck MA, Petrie JR, Sesti G, Mannucci E, Courr J. A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care. 2015.

  14. Ryan D, Acosta A. GLP-1 receptor agonists: nonglycemic clinical effects in weight loss and beyond. Obesity. 2015;23(6):1119–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang X, Liu H, Chen J, Li Y, Qu S. Multiple factors related to the secretion of glucagon-like peptide-1. Int J Endocrinol. 2015;2015:651757.

    PubMed Central  PubMed  Google Scholar 

  16. Trahair LG, Horowitz M, Stevens JE, Feinle-Bisset C, Standfield S, Piscitelli D, et al. Effects of exogenous glucagon-like peptide-1 on blood pressur, heart rate, gastric emptying, mesenteric blood flow and glycaemic responses to oral glucose in older individuals with normal glucose tolerance or type 2 diabetes. Diabetologia. 2015;58:1769–78.

    Article  CAS  PubMed  Google Scholar 

  17. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz S, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and independent pathways. Circulation. 2008;117:2340–50.

    Article  CAS  PubMed  Google Scholar 

  18. De Mello AH, Prá M, Cardoso LC, de Bona SR, Rezin GT. Incretin-based therapies for obesity treatment. Metabolism. 2015;64(9):967–81.

    Article  PubMed  Google Scholar 

  19. Saraiva FK, Sposito AC. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol. 2014;13:142.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Fisher M. Glucagon-like peptide 1 receptor agonists and cardiovascular risk in type 2 diabetes: a clinical perspective. Diabetes Obes Metab. 2015;17:335–42.

    Article  CAS  PubMed  Google Scholar 

  21. Li P, Tiwari HK, Lin WY, Allison DB, Chung WK, Leibel RL, et al. Genetic association analysis of 30 genes related to obesity in a European American population. Int J Obes. 2014;38(5):724–9.

    Article  Google Scholar 

  22. Lin CH, Lee YS, Huang YY, Hsieh SH, Chen ZS, Tsai CN. Polymorphisms of GLP-1 receptor gene and response to GLP-1 analogue in patients with poorly controlled type 2 diabetes. J Diabetes Res. 2015;2015:176949.

    PubMed Central  PubMed  Google Scholar 

  23. Nagashima M, Watanabe T, Terasaki M. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia. 2011;54:2649–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.

    Article  CAS  PubMed  Google Scholar 

  25. DeNicola M, Du J, Wang Z, Yano N, Zhang L, Wang Y, et al. Stimulation of glucagon-like peptide-1 receptor through exendin-4 preserves myocardial performance and prevents cardiac remodeling in infarcted myocardium. Am J Physiol Endocrinol Metab. 2014;307(8):E630–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Balteau M, Van Steenbergen A, Timmermans AD, Dessy C, Behets-wydemans G, Tajeddine N, et al. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am J Physiol Heart Circ Physiol. 2014;307(8):H1120–33.

    Article  CAS  PubMed  Google Scholar 

  27. Akiyama E, Sugiyama S, Matsubara J, Kurokawa H, Konishi M, Nozaki T, et al. Decreased plasma levels of active glucagon-like peptide-1 in coronary artery disease. J Am Coll Cardiol. 2015;65(7):754–5.

    Article  CAS  PubMed  Google Scholar 

  28. Konishi M, Akiyama E, Matsuzawa Y, Suzuki H, Maejima N, Umemura S, et al. Glucagon-like peptide-1 levels on admission for acute myocardial infarction with or without acute hyperglycemia. Int J Cardiol. 2014;176(3):1214–6.

    Article  PubMed  Google Scholar 

  29. Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP, et al. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure–prone rat. Circ Heart Fail. 2008;1:153–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.

    Article  CAS  PubMed  Google Scholar 

  31. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109(8):962–5.

    Article  CAS  PubMed  Google Scholar 

  32. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sokos GG, Bolukoglu H, German J, Hentosz T, Magovern GJ, Maher TD, et al. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007;100(5):824–9.

    Article  CAS  PubMed  Google Scholar 

  34. Inoue T, Inoguchi T, Sonoda N, Hendarto H. GLP-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis. 2015;240(1):250–9.

    Article  CAS  PubMed  Google Scholar 

  35. Robinson E, Cassidy RS, Tate M, Zhao Y, Lockhart S, Calderwood D, et al. Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol. 2015;110:20.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Timmers L, Henriques JPS, De Kleijn DPV, Devries JH, Kemperman H, Steendijk P, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53(6):501–10.

    Article  CAS  PubMed  Google Scholar 

  37. Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, et al. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis. 2014;232(1):156–64.

    Article  CAS  PubMed  Google Scholar 

  38. Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol. 2009;201:59–66.

    Article  CAS  PubMed  Google Scholar 

  39. Koska J, Sands M, Burciu C, Souza KMD, Raravikar K, Liu J, et al. Exenatide protects against glucose- and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans. Diabetes. 2015;64:2624–35.

  40. Zhan J, Wang Y, Wang Y, Tang Z, Tan P, Huang W, et al. The protective effect of GLP-1 analogue in arterial calcification through attenuating osteoblastic differentiation of human VSMCs. Int J Cardiol. 2015;189:188–93.

    Article  PubMed  Google Scholar 

  41. Vilsboll T, Christense M, Junker AE, Knop FK, Gluud L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kim SH, Liu A, Ariel D, Abbasi F, Lamendola C, Grove K, et al. Pancreatic beta cell function following liraglutide-augmented weight loss in individuals with prediabetes: analysis of a randomised, placebo-controlled study. Diabetologia. 2014;57(3):455–62.

    Article  CAS  PubMed  Google Scholar 

  43. Simó R, Guerci B, Schernthaner G, Gallwitz B, Guzmàn JR, Dotta F, et al. Long-term changes in cardiovascular risk markers during administration of exenatide twice daily or glimepiride: results from the European exenatide study. Cardiovasc Diabetol. 2015;14:116.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Blonde L, Klein EJ, Han J, Zhang B, Mac SM, Poon TH, et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes Metab. 2006;8:436–47.

    Article  CAS  PubMed  Google Scholar 

  45. Bunck MC, Diamant M, Eliasson B, Corner A, Shaginian RM, Heine RJ, et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care. 2010;33(8):1734–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ariel D, Kim SH, Abbasi F, Lamendola CA, Liu A, Reaven GM. Effect of liraglutide administration and a calorie-restricted diet on lipoprotein profile in overweight/obese persons with prediabetes. Nutr Metab Cardiovasc Dis. 2014;24(12):1317–22.

    Article  CAS  PubMed  Google Scholar 

  47. Kim SH, Abbasi F, Lamendola C, Liu A, Reaven G. Benefits of liraglutide treatment in overweight and obese older individuals with prediabetes. Diabetes Care. 2013;36:3276–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. Large-scale RCT demonstrating that liraglutide is associated with weight loss, along with favorable effects on other CVD risk factors including lipid profiles.

    Article  PubMed  Google Scholar 

  49. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjøth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes. JAMA. 2015;314(7):687. Large-scale RCT demonstrating that liraglutide is associated with weight loss, along with favorable effects on other CVD risk factors including lipid profiles.

    Article  CAS  PubMed  Google Scholar 

  50. Gurkan E, Tarkun I, Sahin T, Cetinarslan B. Evaluation of exenatide versus insulin glargine for the impact on endothelial functions and cardiovascular risk markers. Diabetes Res Clin Pract. 2014;106(3):567–75.

    Article  CAS  PubMed  Google Scholar 

  51. Lovshin JA, Barnie A, Dealmeida A, Logan A, Zinman B, Drucker DJ. Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic peptide in hypertensive subjects with type 2 diabetes. Diabetes Care. 2015;38:132–9.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmann A, Rodbard HW, Rosenstock J, Lahtela JT, De Loredo L, Boopalan A, et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo-controlled trial. Diabetes Obes Metab. 2015.

  53. Diamant M, Van Gaal L, Stranks S, Northrup J, Cao D, Taylor K, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010;375(9733):2234–43.

    Article  CAS  PubMed  Google Scholar 

  54. Sun F, Wu S, Guo S, Yu K, Yang Z. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pract. 2015.

  55. Peskin BR, Shcheprov AV, Boye KS, Bruce S, Maggs DG, Gaebler JA. Cardiovascular outcomes associated with a new once-weekly GLP-1 receptor agonist vs. traditional therapies for type 2 diabetes: a simulation analysis. Diabetes Obes Metab. 2011;13:921–7.

    Article  CAS  PubMed  Google Scholar 

  56. Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33:1491–9.

    Article  PubMed  Google Scholar 

  57. Woo JS, Kim W, Ha SJ, Kim JB, Kim S, Kim W, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention results of exenatide myocardial protection in revascularization study. Arterioscler Thromb Vasc Biol. 2013;33:2252–60.

    Article  CAS  PubMed  Google Scholar 

  58. Astrup A, Rössner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374(9701):1606–16.

    Article  CAS  PubMed  Google Scholar 

  59. Faber R, Zander M, Pena A, Michelsen MM, Mygind ND, Prescott E. Effect of the glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in patients with type 2 diabetes – a randomized, single-blinded, cross-over pilot study. Cardiovasc Diabetol. 2015;14:41.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk : a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:38–47. Meta-analysis examining the effects of GLP-1 agonists on cardiovascular outcomes, showing unclear benefit of these agents on population-level outcomes.

    Article  CAS  PubMed  Google Scholar 

  61. Kannan S, Pantalone KM, Matsuda S, Wells BJ, Karafa M, Zimmerman RS. Risk of overall mortality and cardiovascular events in patients with type 2 diabetes on dual drug therapy including metformin: a large database study from the Cleveland Clinic. J Diabetes. 2015.

  62. Bentley-Lewis R, Aguilar D, Riddle MC, Claggett B, Diaz R, Dickstein K, et al. Rationale, design, and baseline characteristics in evaluation of LIXisenatide in acute coronary syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo. Am Heart J. 2015;169(5):631–8.e7. One of several ongoing large-scale trials directly examining the effect of GLP-1 agonists, lixisenatide in this case, on cardiovascular outcomes.

    Article  CAS  PubMed  Google Scholar 

  63. Evaluation of cardiovascular outcomes in patients with type 2 diabetes after acute coronary syndrome during treatment with AVE0010 (Lixisenatide) (ELIXA). Available from: https://clinicaltrials.gov/ct2/show/NCT01147250. Accessed 30 Oct 2015.

  64. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57.

  65. Gejl M, Starup-Linde J, Scheel-thomsen J, Gregersen S, Vestergaard P. Risk of cardiovascular disease: the effects of diabetes and anti-diabetic drugs—a nested case–control study. Int J Cardiol. 2015;178:292–6.

    Article  PubMed  Google Scholar 

  66. Seshasai SRK, Bennett RL, Petrie JR, Bengus M, Ekman S, Dixon M, et al. Cardiovascular safety of the glucagon-like peptide-1 receptor agonist taspoglutide in people with type 2 diabetes : an individual participant data meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2015;17:505–10.

    Article  CAS  PubMed  Google Scholar 

  67. Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J. 2013;166(5):823–30.e5.

    Article  CAS  PubMed  Google Scholar 

  68. Liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results - a long term evaluation (LEADER®). Available from: https://clinicaltrials.gov/ct2/show/NCT01179048. Accessed 30 Oct 2015.

  69. Researching cardiovascular events with a weekly incretin in diabetes (REWIND). Available from: https://clinicaltrials.gov/ct2/show/NCT01394952. Accessed 30 Oct 2015.

  70. Trial to evaluate cardiovascular and other long-term outcomes with semaglutide in subjects with type 2 diabetes (SUSTAINTM 6). Available from: https://clinicaltrials.gov/ct2/show/NCT01720446. Accessed 30 Oct 2015.

  71. Exenatide study of cardiovascular event lowering trial (EXSCEL): a trial to evaluate cardiovascular outcomes after treatment with exenatide once weekly in patients with type 2 diabetes mellitus. Available from: https://clinicaltrials.gov/ct2/show/NCT01144338. Accessed 30 Oct 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua W. Knowles.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nonstatin Drugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarraju, A., Kim, S.H. & Knowles, J.W. Cardiometabolic Effects of Glucagon-Like Peptide-1 Agonists. Curr Atheroscler Rep 18, 7 (2016). https://doi.org/10.1007/s11883-016-0558-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0558-5

Keywords

Navigation