Skip to main content

Advertisement

Log in

Genetics of Familial Hypercholesterolemia

  • New Drugs Approved for Homozygous FH (SS Virani, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200–500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note: For the purposes of this article, it can be assumed that “FH” refers to the heterozygous state as it is the more common form of FH; homozygous FH (HoFH) will be specified in the text.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fahed A, Safa R, Haddad F, et al. Homozygous familial hypercholesterolemia in Lebanon: a genotype/phenotype correlation. Mol Genet Metab. 2011;102:181–8.

    CAS  PubMed  Google Scholar 

  2. Goldstein J, Schrott H, Hazzard W, et al. Hyperlipidemia in coronary heart disease: genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Rader D, Cohen J, Hobbs H. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111(12):1795–803.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Austin A, Hutter C, Zimmern R, Humphries S. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol. 2004;160:407–20.

    PubMed  Google Scholar 

  5. Seftel H, Baker S, Jenkins T, Mendelsohn D. Prevalence of familial hypercholesterolemia in Johannesburg Jews. Am J Med Genet. 1989;34:545–7.

    CAS  PubMed  Google Scholar 

  6. Nordestgaard B, Chapman M, Humphries S, et al. Familial hypercholesterolemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease. Eur Heart J. 2013;34(45):3478–90. This is the Consensus Statement of the European atherosclerosis Society discussing the underdiagnoses of FH, its genetics, and screening approach.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114:1022–36. A thorough review of the biological and genetic characteristics of PCSK9 including animal models and the possible clinical utility.

    CAS  PubMed  Google Scholar 

  8. Cuchel M, Bruckert E, Ginsberg H, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35:2146–57. This is the Consensus Statement of the European atherosclerosis Society and provides an updated approach to genetics and screening of familial hypercholesterolemia.

    PubMed Central  PubMed  Google Scholar 

  9. Tada H, Kawashiri M, Ohtani R, et al. A novel type of familial hypercholesterolemia: double heterozygous mutations in LDL receptor and LDL receptor adaptor protein 1 gene. Atherosclerosis. 2011;219:663–6.

    CAS  PubMed  Google Scholar 

  10. Marduel M, Carrie A, Sassolas A, et al. Molecular spectrum of autosomal dominant hypercholesterolemia in France. Hum Mutat. 2010;31:E1811–1824.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Ejarque I, Real J, Martinez-Hervas S, et al. Evaluation of clinical diagnosis criteria of familial ligand defective apoB 100 and lipoprotein phenotype comparison between LDL receptor gene mutations affecting ligand-binding domain and the R3500Q mutation of the apoB gene in patients from a South European population. Transl Res. 2008;151:162–7.

    CAS  PubMed  Google Scholar 

  12. Benlian P, de Gennes J, Dairou F, et al. Phenotypic expression in double heterozygotes for familial hypercholesterolemia and familial defective apolipoprotein B-100. Hum Mutat. 1996;7:340–5.

    CAS  PubMed  Google Scholar 

  13. Taylor A, Bayly G, Patel K, et al. A double heterozygote for familial hypercholesterolaemia and familial defective apolipoprotein B-100. Ann Clin Biochem. 2010;47:487–90.

    CAS  PubMed  Google Scholar 

  14. Pisciotta L, Oliva P, Cefalu A, et al. Additive effect of mutations in LDLR and PCSK9 genes on the phenotype of familial hypercholesterolemia. Atherosclerosis. 2006;186:433–40.

    CAS  PubMed  Google Scholar 

  15. Noguchi T, Katsuda S, Kawashiri M, et al. The E32K variant of PCSK9 exacerbates the phenotype of familial hypercholesterolaemia by increasing PCSK9 function and concentration in the circulation. Atherosclerosis. 2010;210:166–72.

    CAS  PubMed  Google Scholar 

  16. Soufi M, Rust S, Walter M, Schaefer J. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia. Gene. 2013;521:200–3.

    CAS  PubMed  Google Scholar 

  17. Garcia-Garcia A, Ivorra C, Martinez-Hervas S, et al. Reduced penetrance of autosomal dominant hypercholesterolemia in a high percentage of families: importance of genetic testing in the entire family. Atherosclerosis. 2011;218:423–30.

    CAS  PubMed  Google Scholar 

  18. Ahmad Z, Adams-Huet B, Chen C, Garg A. Low prevalence of mutations in known loci for autosomal dominant hypercholesterolemia in multi-ethnic patient cohort. Circ Cardiovasc Genet. 2012;5:666–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Leigh S, Foster A, Whittall R, Hubbart C, Humphries S. Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet. 2008;72:485–98.

    CAS  PubMed  Google Scholar 

  20. Alonso R, Mata N, Castillo S, et al. Cardiovascular disease in familial hypercholesterolaemia: influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis. 2008;200:315–21.

    CAS  PubMed  Google Scholar 

  21. Hopkins P, Toth P, Ballantyne C, Rader D. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:S9–17.

    PubMed  Google Scholar 

  22. Soutar A, Naoumova R. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4:214–25.

    CAS  PubMed  Google Scholar 

  23. Usifo E, Leigh S, Whittall R, et al. Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann Hum Genet. 2012;76:387–401.

    CAS  PubMed  Google Scholar 

  24. Gudnason V, Day I, Humphries S. Effect on plasma lipid levels of different classes of mutation in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1994;14:1717–22.

    CAS  Google Scholar 

  25. Hobbs H, Brown M, Goldstein J. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1:445–66.

    CAS  PubMed  Google Scholar 

  26. Pisciotta L, Cantafora A, De Stefano F, Langheim S, Calandra S, Bertolini S. A “de novo” mutation of the LDL-receptor gene as the cause of familial hypercholesterolemia. Biochim Biophys Acta. 2002;1587:7–11.

    CAS  PubMed  Google Scholar 

  27. Hobbs H, Russell D, Brown M, et al. The LDL receptor locus and familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet. 1990;24:133–70.

    CAS  PubMed  Google Scholar 

  28. De Castro-Oros I, Pampin S, Bolado-Carrancio A, et al. Functional analysis of LDLR promoter and 5’ UTR mutations in subjects with clinical diagnosis of familial hypercholesterolemia. Hum Mutat. 2011;32:868–72.

    PubMed  Google Scholar 

  29. Guardamagna O, Restagno G, Rolfo E, et al. The type of LDLR gene mutation predicts cardiovascular risk in children with familial hypercholesterolemia. J Pediatr. 2009;155:199–204.

    CAS  PubMed  Google Scholar 

  30. Ten Kate G, Neefjes L, Dedic A, et al. The effect of LDLR-negative genotype on CT coronary atherosclerosis in asymptomatic statin treated patients with heterozygous familial hypercholesterolemia. Atherosclerosis. 2013;227:334–41.

    PubMed  Google Scholar 

  31. Whitfield A, Barrett H, van Bockxmeer F, Burnett J. Lipid disorder and mutations in the APOB gene. Clin Chem. 2004;50:1725–32.

    CAS  PubMed  Google Scholar 

  32. Blackhart B, Ludwig E, Pierotti V, et al. Structure of the human apolipoprotein B gene. J Biol Chem. 1986;261:15364–7.

    CAS  PubMed  Google Scholar 

  33. Myant N. Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis. 1993;104:1–18.

    CAS  PubMed  Google Scholar 

  34. Boren J, Ekstrom U, Agren B, Nilsson-Ehle P, Innerarity T. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem. 2001;276:9214–8.

    CAS  PubMed  Google Scholar 

  35. Innerarity T, Mahley R, Weisgraber K, et al. Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990;31:1337–49.

    CAS  PubMed  Google Scholar 

  36. Pullinger C, Hennessy L, Chatterton J, et al. Familial ligand-defective apolipoprotein B—identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest. 1995;95:1225–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Soufi M, Sattler A, Maerz W, et al. A new but frequent mutation of APOB-100APOB His 3543Tyr. Atherosclerosis. 2004;174:11–6.

    CAS  PubMed  Google Scholar 

  38. Tai D, Pan J, Lee-Chen G. Identification and haplotype analysis of apolipoprotein B-100 Arg3500 → Trp mutation in hyperlipidemic Chinese. Clin Chem. 1998;44:1659–65.

    CAS  PubMed  Google Scholar 

  39. Al-Khateeb A, Mohd M, Yusof Z, Zilfalil B. Molecular description of familial defective APOB-100 in Malaysia. Biochem Genet. 2013;51:811–23.

    CAS  PubMed  Google Scholar 

  40. Motazacker MM, Pirruccello J, Huijgen R, et al. Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. Eur Heart J. 2012;33:1360–6.

    CAS  PubMed  Google Scholar 

  41. Thomas ER, Atanur SS, Norsworthy PJ, et al. Identification and biochemical analysis of a novel APOB mutation that causes autosomal dominant hypercholesterolemia. Mol Genet Genomic Med. 2013;1:155–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Cohen J, Boerwinkle E, Mosley Jr T, Hobbs H. Sequence variations in PCSK9, low LDL and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    CAS  PubMed  Google Scholar 

  43. Abifadel M, Elbitar S, El Khoury P, et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep. 2014;16:439.

    PubMed  Google Scholar 

  44. Cariou B, Le May C, Costet P. Clinical aspects of PCSK9. Atherosclerosis. 2011;216:258–65.

    CAS  PubMed  Google Scholar 

  45. Pandit S, Wisniewski D, Santoro J, et al. Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. J Lipid Res. 2008;49:1333–43.

    CAS  PubMed  Google Scholar 

  46. De Castro-Oros I, Pocovi M, Civeira F. The genetic basis of familial hypercholesterolemia: inheritance, linkage and mutations. Appl Clin Genet. 2010;3:52–64.

    Google Scholar 

  47. Mabuchi H, Nohara A, Noguchi T, et al. Genotypic and phenotypic features in homozygous familial hypercholesterolemia caused by proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation. Atherosclerosis. 2014;236:54–61.

    CAS  PubMed  Google Scholar 

  48. Pisciotta L, Oliva C, Pes G, et al. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis. 2006;188:398–405.

    CAS  PubMed  Google Scholar 

  49. Garcia K, Wilund K, Arca M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001;292:1394–8.

    CAS  PubMed  Google Scholar 

  50. Rahalkar A, Hegele R. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab. 2008;93:282–94.

    CAS  PubMed  Google Scholar 

  51. Filigheddu F, Quagliarini F, Campagna F, et al. Prevalence and clinical features of heterozygous carriers of autosomal recessive hypercholesterolemia in Sardinia. Atherosclerosis. 2009;207:162–7.

    CAS  PubMed  Google Scholar 

  52. Naoumova R, Neuwirth C, Lee P, et al. Autosomal recessive hypercholesterolaemia: long-term follow up and response to treatment. Atherosclerosis. 2004;174:165–72.

    CAS  PubMed  Google Scholar 

  53. Awan Z, Choi HY, Stitziel N, et al. APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis. 2013;231:218–22.

    CAS  PubMed  Google Scholar 

  54. Marduel M, Ouguerram K, Serre V, et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation. Hum Mutat. 2013;34:83–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through IDOL-dependent ubiquitination of the LDL receptor. Science. 2009;325:100–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Fahed A, Nemer G. Familial hypercholesterolemia: the lipids or the genes? Nutr Metab (Lond). 2011;8:1–12.

    Google Scholar 

  57. Zhang L, Reue K, Fong L, Young S, Tontonoz P. Feedback regulation of cholesterol uptake by the LDL-IDOL-LDLR axis. Arterioscler Thromb Vasc Biol. 2012;32:2541–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Weissglas-Volkov D, Calkin A, Tusie-Luna T, et al. The N342 MYLIP polymorphism is associated with high total cholesterol and increased LDL receptor degradation in humans. J Clin Invest. 2011;121:3062–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Marques-Pinheiro A, Marduel M, Rabes JP, et al. A fourth locus for autosomal dominant hypercholesterolemia maps at 16q22.1. Eur J Hum Genet. 2010;18:1236–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Fouchier S, Dallinga-Thie G, Meijers J, et al. Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ Res. 2014;115:552–5.

    CAS  PubMed  Google Scholar 

  61. Futema M, Plagnol V, Li K, et al. Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations. J Med Genet. 2014;51:537–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Lange L, Hu Y, Zhang H, et al. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am J Hum Genet. 2014;94:233–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Bjorkhem I. Cerebrotendinous xanthomatosis. Curr Opin Lipidol. 2013;24:283–7.

    PubMed  Google Scholar 

  64. Mignarri A, Gallus GN, Dotti MT, Federico A. A suspicion index for early diagnosis and treatment of cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2014;37:421–9.

    CAS  PubMed  Google Scholar 

  65. Inanloorahatloo K, Zand Parsa AF, Huse K, Rasooli P, Davaran S, Platzer M, et al. Mutation in CYP27A1 identified in family with coronary artery disease. Eur J Med Genet. 2013;56:655–60.

    PubMed  Google Scholar 

  66. Khan AO, Aldahmesh MA, Mohamed JY, Alkuraya FS. Juvenile cataract morphology in 3 siblings not yet diagnosed with cerebrotendinous xanthomatosis. Ophthalmology. 2013;120:956–60.

    PubMed  Google Scholar 

  67. Monson DM, DeBarber AE, Bock CJ, Anadiotis G, Merkens LS, Steiner RD, et al. Cerebrotendinous xanthomatosis: a treatable disease with juvenile cataracts as a presenting sign. Arch Ophthalmol. 2011;129:1087–8.

    PubMed Central  PubMed  Google Scholar 

  68. Martini G, Mignarri A, Ruvio M, Valenti R, Franci B, Del Puppo M, et al. Long-term bone density evaluation in cerebrotendinous xanthomatosis: evidence of improvement after chenodeoxycholic acid treatment. Calcif Tissue Int. 2013;92:282–6.

    CAS  PubMed  Google Scholar 

  69. Fraidakis MJ. Psychiatric manifestations in cerebrotendinous xanthomatosis. Transl Psychiatry. 2013;3:e302.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Lorincz MT, Rainier S, Thomas D, Fink JK. Cerebrotendinous xanthomatosis: possible higher prevalence that previously recognized. Arch Neurol. 2005;62:1459–63.

    PubMed  Google Scholar 

  71. Reshef A, Meiner V, Berginer VM, Leitersdorf E. Molecular genetics of cerebrotendinous xanthomatosis in Jews of north African origin. J Lipid Res. 1994;35:478–83.

    CAS  PubMed  Google Scholar 

  72. Leitersdorf E, Safadi R, Meiner V, Reshef A, Björkhem I, Friedlander Y, et al. Cerebrotendinous xanthomatosis in the Israeli Druze: molecular genetics and phenotypic characteristics. Am J Hum Genet. 1994;55:907–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Batta AK, Salen G, Shefer S, Tint GS, Batta M. Increased plasma bile alcohol glucuronides in patients with cerebrotendinous xanthomatosis: effect of chenodeoxycholic acid. J Lipid Res. 1987;28:1006–12.

    CAS  PubMed  Google Scholar 

  74. DeBarber AE, Connor WE, Pappu AS, Merkens LS, Steiner RD. ESI-MS/MS quantification of 7alpha-hydroxy-4-cholesten-3-one facilitates rapid, convenient diagnostic testing for cerebrotendinous xanthomatosis. Clin Chim Acta. 2010;411:43–8.

    CAS  PubMed  Google Scholar 

  75. Matysik S, Orsó E, Black A, Ahrens N, Schmitz G. Monitoring of 7a-hydroxy-4-cholesten-3-one during therapy of cerebrotendinous xanthomatosis: a case report. Chem Phys Lipids. 2011;164:530–4.

    CAS  PubMed  Google Scholar 

  76. DeBarber AE, Luo J, Star-Weinstock M, Purkayastha S, Geraghty MT, Chiang JP, et al. A blood test for cerebrotendinous xanthomatosis with potential for disease detection in newborns. J Lipid Res. 2014;55:146–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Diekstra FP, Saris CG, van Rheenen W, Franke L, Jansen RC, van Es MA, et al. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS. PLoS One. 2012;7:e35333.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Berginer VM, Gross B, Morad K, Kfir N, Morkos S, Aaref S, et al. Chronic diarrhea and juvenile cataracts: think cerebrotendinous xanthomatosis and treat. Pediatrics. 2009;123:143–7.

    PubMed  Google Scholar 

  79. Bhattacharyya AK, Connor WE. Beta-sitosteroemia and xanthomatosis: a newly described lipid storage disease in two sisters. J Clin Invest. 1974;53:1033–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Lu K, M-h L, Hazard S, Brooks-Wilson A, Hidaka H, Kojima H, et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet. 2001;69:278–90.

    PubMed Central  PubMed  Google Scholar 

  81. Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta. 2014;428:82–8.

    CAS  PubMed  Google Scholar 

  82. Escola-Gil JC, Quesada H, Julve J, Martin-Campos JM, Cedo L, Blanco-Vaca F. Sitosterolemia: diagnosis, investigation and management. Curr Atheroscler Rep. 2014;16:424.

    PubMed  Google Scholar 

  83. Lin DS, Steiner RD, Merkens LS, Pappu AS, Coner WE. The effects of sterol structure upon sterol esterification. Atherosclerosis. 2010;208:155–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Patel SB. Recent advances in understanding the STSL locus and ABCG5/ABCG8 biology. Curr Opin Lipidol. 2014;25:169–75.

    CAS  PubMed  Google Scholar 

  85. Lee MH, Lu K, Patel SB. Genetic basis of sitosterolemia. Curr Opin Lipidol. 2001;12:141–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Othman RA, Myrie SB, Jones PJ. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia. Atherosclerosis. 2013;231:291–9.

    CAS  PubMed  Google Scholar 

  87. Hansel B, Carrié A, Brun-Druc N, Leclert G, Chantepie S, Coiffard AS, et al. Premature atherosclerosis is not systematic in phytosterolemic patients: severe hypercholesterolemia as a confounding factor in five subjects. Atherosclerosis. 2014;234:162–8.

    CAS  PubMed  Google Scholar 

  88. Silbernagel G, Chapman MJ, Genser B, Kleber ME, Fauler G, Scharnagl H, et al. High intestinal cholesterol absorption is associated with cardiovascular disease and risk alleles in ABCG8, and ABO. J Am Coll Cardiol. 2013;62:291–9.

    CAS  PubMed  Google Scholar 

  89. Teupser D, Baber R, Scholz M, Illig T, Gieger C, Holdt LM, et al. Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ Cardiovasc Genet. 2010;3:331–9.

    CAS  PubMed  Google Scholar 

  90. Wang Z, Cao L, Su Y, Wang G, Wang R, Yu Z, et al. Specific macrothrombocytopenia/hemolytic anemia associated with sitosterolemia. Am J Hematol. 2014;89:320–4.

    CAS  PubMed  Google Scholar 

  91. Salen G, von Bergmann K, Lutjohann D, Kwiterovich P, Kane J, Patel SB, et al. Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation. 2004;109:966–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Tang W, Ma Y, Ioannou YA, Davies YP, Yu L. Genetic inactivation of NPLC1L1 protects against sitosterolemia in mice lacking ABCG5/ABCG8. J Lipid Res. 2009;50:293–300.

    CAS  PubMed  Google Scholar 

  93. Niu DM, Chong KW, Hsu JH, Wu TJ, Huang CH, Lo MY, et al. Clinical observations, molecular genetic analysis and treatment of sitosterolemia in infants and children. J Inherit Metab Dis. 2010;33:437–43.

    CAS  PubMed  Google Scholar 

  94. Lutjohann D, von Bergmann K, Sirah W, MacDonell G, Johnson-Levonas AO, Shah A, et al. Long term efficacy and safety of ezetimibe 10 mg in patients with homozygous sitosterolemia: a 2-year, open label extension trial. Int J Clin Prac. 2008;62:1499–510.

    CAS  Google Scholar 

  95. Myrie SB, Mymin D, Triggs-Raine B, Jones PJ. Serum lipid, plant sterols, and cholesterol kinetic responses to plant sterol supplementation in phytosterolemia heterozygotes and control individuals. Am J Clin Nutr. 2012;95:837–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Kanaji T, Kanaji S, Montgomery RR, Patel SB, Newman PJ. Platelet hyperreactivity explains the bleeding abnormality and macrothrombocytopenia in a murine model of sitosterolemia. Blood. 2013;122:2732–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. McDaniel AL, Alger HM, Sawyer JK, Kelley KL, Kock ND, Brown JM, et al. Phytosterol feeding causes toxicity in ABCG5/G8 knockout mice. Am J Pathol. 2013;182:1131–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Aslanidis C, Klima H, Lackner KJ, Schmitz G. Genomic organization of the human lysosomal acid lipase gene (LIPA). Genomics. 1994;20:329–31.

    CAS  PubMed  Google Scholar 

  99. Fouchier SW, Defesche JC. Lysosomal acid lipase A and the hypercholesterolaemic phenotype. Curr Opin Lipidol. 2013;24:332–8.

    CAS  PubMed  Google Scholar 

  100. Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesterol ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol. 2013;58:1230–43.

    CAS  PubMed  Google Scholar 

  101. Elleder M, Chlumska A, Hyanek J, et al. Subclinical course of cholesteryl ester storage disease in an adult with hypercholesterolemia, accelerated atherosclerosis and liver cancer. J Hepatol. 2000;32:528–34.

    CAS  PubMed  Google Scholar 

  102. Stitziel NO, Fouchier SW, Sjouke B, Peloso GM, Moscoso AM, Auer PL, et al. National Heart, Lung, and Blood Institute GO Exome Sequencing Project. Arterioscler Thromb Vasc Biol. 2013;33:2909–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Reiner Z, Guardamagna O, Nair D, Soran H, Hovingh K, Bertolini S, et al. Lysosomal acid lipase deficiency-an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis. 2014;235:21–30.

    CAS  PubMed  Google Scholar 

  104. Scott SA, Liu B, Nazarenko I, Martis S, Kozkitina J, Yang Y, et al. Frequency of the cholesterol ester storage disease common LIPA E8SJM mutation (c.894G>A) in various racial and ethnic groups. Hepatology. 2013;58:958–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Reynolds T. Cholesterol ester storage disease: a rare and possibly treatable cause of premature vascular disease and cirrhosis. J Clin Pathol. 2013;66:818–923.

    Google Scholar 

  106. Hamilton J, Jones I, Srivastava R, Galloway P. A new method for the measurement of lysosomal acid lipase in dried blood spots using the inhibitor lalistat 2. Clin Chim Acta. 2012;413:1207–10.

    CAS  PubMed  Google Scholar 

  107. Balwani M, Breen C, Enns GM, Deegan PB, Honzík T, Jones S, et al. Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Hepatology. 2013;58:950–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. National Society of Genetic Counselors' Definition Task Force, Resta R, Biesecker BB, Bennett RL, Blum S, Hahn SE, et al. A new definition of genetic counseling: National Society of Genetic Counselors’ Task Force Report. J Genet Couns. 2006;15(2):77–83.

    Google Scholar 

  109. Sturm AC. The role of genetic counselors for patients with familial hypercholesterolemia. Curr Genet Med Rep. 2014;2:68–74.

    Google Scholar 

  110. ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet Med. 2012;14(8):759–61.

    Google Scholar 

  111. Miller C, Krautscheid P, Baldwin E, et al. Genetic counselor review of genetic test orders in a reference laboratory reduces unnecessary testing. Am J Med Genet. 2014;164A:1094–101.

    PubMed  Google Scholar 

  112. Leighton J, Valverde K, Berhardt B. The general public’s understanding and perception of direct-to-consumer genetic test results. Public Health Genomics. 2012;15:11–21.

    CAS  PubMed  Google Scholar 

  113. Hilgart J, Mercer J, Thirlaway K. Individuals’ experiences of, and responses to, a negative genetic test result for familial hypercholesterolemia. J Health Psychol. 2013;18:339–49.

    PubMed  Google Scholar 

  114. Santos RD, Maranhao RC. What is new in familial hypercholestgerolemia? Curr Opin Lipidol. 2014;25:183–8.

    CAS  PubMed  Google Scholar 

  115. Marks D, Wonderling D, Thorogood M, et al. Cost effectiveness analysis of different approaches of screening for familial hypercholesterolemia. BMJ. 2002;324:1303.

    PubMed Central  PubMed  Google Scholar 

  116. Leren T, Finborud T, Manshaus T, Ose L, Berge K. Diagnosis of familial hypercholesterolemia in general practice using clinical diagnostic criteria or genetic testing as part of cascade genetic screening. Community Genet. 2008;11:26–35.

    PubMed  Google Scholar 

  117. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int J Cardiol. 2014;171:309–25.

    PubMed  Google Scholar 

  118. Van der Roest W, Pennings J, Bakker M, van den Berg M, van Tintelen J. Family letters are an effective way to inform relatives about inherited cardiac disease. Am J Med Genet A. 2009;149A:357–63.

    PubMed  Google Scholar 

  119. Slimani A, Jelassi A, Jguirim I, Najah M, Rebhi L, Omezzine A, et al. Effect of mutations in LDLR and PCSK9 genes on phenotypic variability in Tunisian familial hypercholesterolemia patients. Atherosclerosis. 2012;222(1):158–66.

    CAS  PubMed  Google Scholar 

  120. Mabuchi H, Nohara A, Noguchi T, et al. Molecular genetic epidemiology of homozygous familial hypercholesterolemia in the Hokuriku district of Japan. Atherosclerosis. 2011;214:404–7.

    CAS  PubMed  Google Scholar 

  121. Tichý L, Freiberger T, Zapletalová P, Soška V, Ravčuková B, Fajkusová L. The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations. Atherosclerosis. 2012;223(2):401–8.

    PubMed  Google Scholar 

  122. Diakou M, Miltiadous G, Xenophontos SL, Manoli P, Cariolou MA, Elisaf M. Spectrum of LDLR gene mutations, including a novel mutation causing familial hypercholesterolaemia, in North-western Greece. Eur J Intern Med. 2011;22(5):e55–9.

    CAS  PubMed  Google Scholar 

  123. Bertolini S, Pisciotta L, Rabacchi C, Cefalù AB, Noto D, Fasano T, et al. Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy. Atherosclerosis. 2013;227(2):342–8.

    CAS  PubMed  Google Scholar 

  124. Medeiros AM, Alves AC, Francisco V, Bourbon M, Investigators of the Portuguese FH Study. Update of the Portuguese Familial Hypercholesterolaemia Study. Atherosclerosis. 2010;21(2):553–8.

    Google Scholar 

  125. Palacios L, Grandoso L, Cuevas N, et al. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis. 2012;221:137–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Ashley Kuharchik (CPhT) for the use of her graphic design skills. We would also like to thank Ingrid Glurich, PhD and Marie Fleisner for their editorial assistance in preparing this manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Ariel Brautbar, Emili Leary, Kristen Rasmussen, Don P. Wilson, Robert D. Steiner, and Salim Virani declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Brautbar.

Additional information

This article is part of the Topical Collection on New Drugs Approved for Homozygous FH

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brautbar, A., Leary, E., Rasmussen, K. et al. Genetics of Familial Hypercholesterolemia. Curr Atheroscler Rep 17, 20 (2015). https://doi.org/10.1007/s11883-015-0491-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-015-0491-z

Keywords

Navigation