Skip to main content

Advertisement

Log in

Novel Therapies for Treating Familial Hypercholesterolemia

  • Nonstatin Drugs (WB Borden, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Familial hypercholesterolemia is an inherited disorder associated with early accelerated atherosclerosis with morbidity and mortality resulting from premature cardiovascular disease. Affected individuals have extreme elevations in low-density lipoprotein cholesterol levels. Patients usually do not achieve target reductions in cholesterol levels with conventional antihyperlipidemic pharmacotherapy. This unmet need has resulted in the recent development and approval of novel therapies targeting different cholesterol pathways. This article briefly summarizes familial hypercholesterolemia and then discusses the newer pharmacotherapies available in the management of familial hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of outstanding importance

  1. Raal FJ, Santos RD. Homozygous familial hypercholesterolemia: current perspectives on diagnosis and treatment. Atherosclerosis. 2012;223(2):262–8.

    Article  CAS  PubMed  Google Scholar 

  2. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356(2):148–56.

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. In: Scriver CR, Sly WS, Childs B, Beaudet AL, Valle C, Kinzler KW, Vogelstein B, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 2863–913.

    Google Scholar 

  4. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1(6):445–66.

    Article  CAS  PubMed  Google Scholar 

  5. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111(12):1795–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Robinson JG. Management of familial hypercholesterolemia: a review of the recommendations from the national lipid association expert panel on familial hypercholesterolemia. J Manag Care Pharm. 2013;19(2):139–49.

    PubMed  Google Scholar 

  7. Goldberg AC, Hopkins PN, Toth PP, Ballantyne CM, Rader DJ, Robinson JG, et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5(3):133–40.

    Article  PubMed  Google Scholar 

  8. Widhalm K, Binder CB, Kreissl A, Aldover-Macasaet E, Fritsch M, Kroisboeck S, et al. Sudden death in a 4-year-old boy: a near-complete occlusion of the coronary artery caused by an aggressive low-density lipoprotein receptor mutation (W556R) in homozygous familial hypercholesterolemia. J Pediatr. 2011;158(1):167.

    Article  PubMed  Google Scholar 

  9. Smith RJ, Hiatt WR. Two new drugs for homozygous familial hypercholesterolemia: managing benefits and risks in a rare disorder. JAMA Intern Med. 2013;6:1–3.

    Google Scholar 

  10. Moorjani S, Roy M, Torres A, Betard C, Gagne C, Lambert M, et al. Mutations of low-density-lipoprotein-receptor gene, variation in plasma cholesterol, and expression of coronary heart disease in homozygous familial hypercholesterolaemia. Lancet. 1993;341(8856):1303–6.

    Article  CAS  PubMed  Google Scholar 

  11. Kim YR, Han KH. Familial hypercholesterolemia and the atherosclerotic disease. Korean Circ J. 2013;43(6):363–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013. doi:10.1093/eurheartj/eht273.

    Google Scholar 

  13. Gagne C, Gaudet D, Bruckert E. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation. 2002;105(21):2469–75.

    Article  CAS  PubMed  Google Scholar 

  14. Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–6. This was the first phase 3 dose-escalation study that evaluated the efficacy and safety of lomitapide in HoFH patients. The beneficial results of the study led to the FDA approval for lomitapide..

    Article  CAS  PubMed  Google Scholar 

  15. Raal FJ, Pilcher GJ, Illingworth DR, Pappu AS, Stein EA, Laskarzewski P, et al. Expanded-dose simvastatin is effective in homozygous familial hypercholesterolaemia. Atherosclerosis. 1997;135(2):249–56.

    Article  CAS  PubMed  Google Scholar 

  16. Raal FJ, Pappu AS, Illingworth DR, Pilcher GJ, Marais AD, Firth JC, et al. Inhibition of cholesterol synthesis by atorvastatin in homozygous familial hypercholesterolaemia. Atherosclerosis. 2000;150(2):421–8.

    Article  CAS  PubMed  Google Scholar 

  17. Marais AD, Raal FJ, Stein EA, Rader DJ, Blasetto J, Palmer M, et al. A dose-titration and comparative study of rosuvastatin and atorvastatin in patients with homozygous familial hypercholesterolaemia. Atherosclerosis. 2008;197(1):400–6.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson GR, Barbir M, Davies D, Dobral P, Gesinde M, Livingston M, et al. Efficacy criteria and cholesterol targets for LDL apheresis. Atherosclerosis. 2010;208(2):317–21.

    Article  CAS  PubMed  Google Scholar 

  19. Hudgins LC, Kleinman B, Scheuer A, White S, Gordon BR. Long-term safety and efficacy of low-density lipoprotein apheresis in childhood for homozygous familial hypercholesterolemia. Am J Cardiol. 2008;102(9):1199–204.

    Article  CAS  PubMed  Google Scholar 

  20. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380(9836):29–36.

    Article  CAS  PubMed  Google Scholar 

  21. Stein EA, Ose L, Retterstol K, Tonstad S, Schleman M, Harris S, et al. Further reduction of low-density lipoprotein cholesterol and C-reactive protein with the addition of ezetimibe to maximum-dose rosuvastatin in patients with severe hypercholesterolemia. J Clin Lipidol. 2007;1(4):280–6.

    Article  PubMed  Google Scholar 

  22. Pijlman AH, Huijgen R, Verhagen SN, Imholz BP, Liem AH, Kastelein JJ, et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis. 2010;209(1):189–94.

    Article  CAS  PubMed  Google Scholar 

  23. US Food and Drug Administration. FDA approves new orphan drug for rare cholesterol disorder. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm333285.htm 2012.

  24. Aegerion Pharmaceuticals. FDA approves Aegerion Pharmaceuticals’ JUXTAPID(TM) (lomitapide) capsules for homozygous familial hypercholesterolemia (HoFH). http://ir.aegerion.com/releasedetail.cfm?ReleaseID=728650 2012.

  25. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9719):998–1006. This reports a phase 3 trial showing the effect of mipomersen on lowering LDL-C levels in HoFH patients..

    Article  CAS  PubMed  Google Scholar 

  26. McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7(11):e49006. This reports a randomized placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia that showed an increase in cardiovascular incidents in the mipomersen arm..

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126(19):2283–92.

    Article  CAS  PubMed  Google Scholar 

  28. Vogt A, Parhofer KG. The potential of mipomersen, an ApoB synthesis inhibitor, to reduce necessity for LDL-apheresis in patients with heterozygous familial hypercholesterolemia and coronary artery disease. Expert Opini Pharmacother. 2013;14(6):691–7.

    Article  CAS  Google Scholar 

  29. Visser ME, Wagener G, Baker BF, Geary RS, Donovan JM, Beuers UH, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2012;33(9):1142–9. This reports a randomized double-blind placebo-controlled study of mipomersen in statin-intolerant patients with high risk of cardiovascular disease..

    Article  CAS  PubMed  Google Scholar 

  30. US Food and Drug Administration. KYNAMRO (mipomersen sodium) injection. 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203568s000lbl.pdf.

  31. Genzyme. A Study of the Safety and Efficacy of Two Different Regimens of Mipomersen in Patients With Familial Hypercholesterolemia and Inadequately Controlled Low-Density Lipoprotein Cholesterol (FOCUS FH). 2011–2013. Available from http://clinicaltrials.gov/show/NCT01475825. This is a randomized placebo-controlled trial currently being done to determine the effect of mipomersen in severe HeFH.

  32. Stein EA, Mellis S, Yancopoulos GD, Stahl N, Logan D, Smith WB, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366(12):1108–18. This reported a phase 1 trial of PCSK9-inhibiting monoclonal antibody (REGN727) showing a significant decrease in LDL-C levels in blood of HeFH patients..

    Article  CAS  PubMed  Google Scholar 

  33. Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem. 2004;279(48):50630–8.

    Article  CAS  PubMed  Google Scholar 

  34. Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A. 2004;101(18):7100–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Farnier M. PCSK9 inhibitors. Curr Opin Lipidol. 2013;24(3):251–8.

    Article  CAS  PubMed  Google Scholar 

  36. Goldberg AC. Novel therapies and new targets of treatment for familial hypercholesterolemia. J Clin Lipidol. 2010;4(5):350–6.

    Article  PubMed  Google Scholar 

  37. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen JC, Boerwinkle E, Mosley Jr TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  39. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55(25):2833–42.

    Article  CAS  PubMed  Google Scholar 

  40. Graham MJ, Lemonidis KM, Whipple CP, Subramaniam A, Monia BP, Crooke ST, et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res. 2007;48(4):763–7.

    Article  CAS  PubMed  Google Scholar 

  41. Gupta N, Fisker N, Asselin MC, Lindholm M, Rosenbohm C, Orum H, et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010;5(5):e10682.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105(33):11915–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ason B, Tep S, Davis Jr HR, Xu Y, Tetzloff G, Galinski B, et al. Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J Lipid Res. 2011;52(4):679–87.

    Article  CAS  PubMed  Google Scholar 

  44. Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53(12):2515–24.

    Article  CAS  PubMed  Google Scholar 

  45. Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman D, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60(19):1888–98. This reported a phase 1 study that evaluated the safety and effects of AMG145 (PCSK9 antibody) in healthy and hypercholesterolemic subjects receiving statin therapy..

    Article  CAS  PubMed  Google Scholar 

  46. Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation. 2012;126(20):2408–17. This reported a multicenter, phase 2 randomized trial that tested the safety and efficacy of AMG145 (PCSK9 antibody) in HeFH patients already receiving intensive antihyperlipidemic therapy..

    Article  CAS  PubMed  Google Scholar 

  47. Amgen. Trial Evaluating PCSK9 Antibody in Subjects With LDL Receptor Abnormalities (TESLA). 2012–2013. Available from http://www.clinicaltrials.gov/ct2/show/NCT01588496?term=TESLA&rank=3. This is a multicenter randomized trial that is currently being done to test the safety and efficacy of AMG145 (PCSK9 antibody) in HoFH patients.

  48. Grossman M, Raper SE, Wilson JM. Transplantation of genetically modified autologous hepatocytes into nonhuman primates: feasibility and short-term toxicity. Hum Gene Ther. 1992;3(5):501–10.

    Article  CAS  PubMed  Google Scholar 

  49. Chowdhury JR, Grossman M, Gupta S, Chowdhury NR, Baker Jr JR, Wilson JM. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science. 1991;254(5039):1802–5.

    Article  CAS  PubMed  Google Scholar 

  50. Grossman M, Rader DJ, Muller DW, Kolansky DM, Kozarsky K, Clark 3rd BJ, et al. A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med. 1995;1(11):1148–54.

    Article  CAS  PubMed  Google Scholar 

  51. Grossman M, Raper SE, Kozarsky K, Stein EA, Engelhardt JF, Muller D, et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet. 1994;6(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  52. Fattahi F, Asgari S, Pournasr B, Seifinejad A, Totonchi M, Taei A, et al. Disease-corrected hepatocyte-like cells from familial hypercholesterolemia-induced pluripotent stem cells. Mol Biotechnol. 2013;54(3):863–73.

    Article  CAS  PubMed  Google Scholar 

  53. Davidson MH. Novel nonstatin strategies to lower low-density lipoprotein cholesterol. Curr Atheroscler Rep. 2009;11(1):67–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Salim S. Virani is supported by a Department of Veterans Affairs Health Services Research and Development Service Career Development Award.

Conflict of Interest

Salman J. Bandeali, Jad Daye, and Salim S. Virani declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim S. Virani.

Additional information

The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans Affairs.

This article is part of the Topical Collection on Nonstatin Drugs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandeali, S.J., Daye, J. & Virani, S.S. Novel Therapies for Treating Familial Hypercholesterolemia. Curr Atheroscler Rep 16, 382 (2014). https://doi.org/10.1007/s11883-013-0382-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0382-0

Keywords

Navigation