Skip to main content

Advertisement

Log in

The role of lipoprotein-associated phospholipase A2 as a marker for atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme that belongs to the superfamily of phospholipase A2 enzymes. Although initial studies showed that Lp-PLA2 might be protective against atherosclerosis, emerging data seem to suggest that Lp-PLA2 may be proatherogenic, which is an effect thought to be mediated by lysophosphatidylcholine and oxidized nonesterified fatty acids, two mediators generated by Lp-PLA2. This article reviews the potential mechanisms by which Lp-PLA2 may participate in the pathogenesis of atherosclerosis and its clinical manifestations, namely, coronary artery disease and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Greenland P, Smith SC Jr, Grundy SM: Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation 2001, 104:1863–1867.

    PubMed  CAS  Google Scholar 

  2. Arad Y, Goodman KJ, Roth M, et al.: Coronary calcification, coronary risk factors, C-reactive protein and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 2005, 46:158–165.

    Article  PubMed  CAS  Google Scholar 

  3. Ridker PM, Rifai N, Rose L, et al.: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002, 347:1557–1565.

    Article  PubMed  CAS  Google Scholar 

  4. Nambi V, Ballantyne CM: Lipoprotein-associated phospholipase A2: pathogenic mechanisms and clinical utility for predicting cardiovascular events. Curr Atheroscler Rep 2006, 8:374–381.

    Article  PubMed  CAS  Google Scholar 

  5. Tjoelker LW, Wilder C, Eberhardt C, et al.: Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature 1995, 374:549–553.

    Article  PubMed  CAS  Google Scholar 

  6. Min JH, Jain MK, Wilder C, et al.: Membrane-bound plasma platelet activating factor acetylhydrolase acts on substrate in the aqueous phase. Biochemistry 1999, 38:12935–12942.

    Article  PubMed  CAS  Google Scholar 

  7. Karabina SA, Liapikos TA, Grekas G, et al.: Distribution of PAF-acetylhydrolase Activity in human plasma low-density subfractions. Biochim Biophysics Acta 1994, 1213:34–38.

    CAS  Google Scholar 

  8. Hodis HN, Kramsch DM, Avogaro P, et al.: Biochemical and cytotoxic characteristics of an in vivo circulation oxidized low density lipoprotein (LDL). J Lipid Res 1994, 35:669–677.

    PubMed  CAS  Google Scholar 

  9. Yang CY, Raya JL, Chen HH, et al.: Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low density lipoproteins. Arterioscler Thromb Vasc Biol 2003, 23:1083–1090.

    Article  PubMed  CAS  Google Scholar 

  10. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM: Platelet-activating factor acetylhydrolases. J Biol Chem 1997, 272:17895–17898.

    Article  PubMed  CAS  Google Scholar 

  11. Watson AD, Navab M, Hama SY, et al.: Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest 1995, 95:774–782.

    Article  PubMed  CAS  Google Scholar 

  12. Lepran I, Lefer AM: Ischemia aggravating effects of platelet-activating factor in acute myocardial ischemia. Basic Res Cardiol 1985, 80:135–141.

    Article  PubMed  CAS  Google Scholar 

  13. Henig NR, Aitken ML, Liu MC, et al.: Effect of recombinant human platelet-activating factor-acetylhydrolase on allergen-induced asthmatic responses. Am J Respir Crit Care Med 2000, 162:523–527.

    PubMed  CAS  Google Scholar 

  14. Opal S, Laterre PF, Abraham E, et al.: Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double blind, placebo-controlled, clinical trial. Crit Care Med 2004, 32:332–341.

    Article  PubMed  CAS  Google Scholar 

  15. Marathe GK, Zimmerman GA, McIntyre TM: Platelet-activating factor acetylhydrolase, and not paraoxonase-1, is the oxidized phospholipids hydrolase of high density lipoprotein particles. J Biol Chem 2003, 278:3937–3947.

    Article  PubMed  CAS  Google Scholar 

  16. Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation. 2002, 105:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  17. Zalewski A, Macphee C: Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 2005, 25:923–931.

    Article  PubMed  CAS  Google Scholar 

  18. Chai YC, Howe PH, DiCorleto PE, Chisolm GM: Oxidized low density lipoprotein and lysophosphatidylcholine stimulate cell cycle entry in vascular smooth muscle cell. Evidence for release of fibroblast growth factor-2. J Biol Chem 1996, 271:17791–17797.

    Article  PubMed  CAS  Google Scholar 

  19. Hoogeveen RC, Ballantyne CM: PLAC™ test for identification of individuals at increased risk for coronary heart disease. Expert Rev Mol Diagn 2005, 5:9–14.

    Article  PubMed  CAS  Google Scholar 

  20. Tew DG, Southan C, Rice SQ, et al.: Purification, properties, sequencing, and cloning of a lipoprotein-associated serine dependant phospholipase involved in the oxidative modification of low density lipoprotein. Aretrioscler Thromb Vasc Biol 1996, 16:591–599.

    CAS  Google Scholar 

  21. Stafforini DM, Satoh K, Atkinson DL, et al.: Platelet-activating factor acetylhydrolase deficiency: a missense mutation near the active site of an anti-inflammatory phospholipase. J Clin Invest 1996, 97:2784–2791.

    PubMed  CAS  Google Scholar 

  22. Yamada Y, Ichihara S, Fujimara T, Yokota M: Identification of the G994(T missense in exon 9 of the plasma platelet-activating factor acetylhydrolase gene as an independent risk factor for coronary artery disease in Japanese men. Metabolism 1998, 47:177–181.

    Article  PubMed  CAS  Google Scholar 

  23. Hiramoto M, Yosihda H, Imaizumi T, et al.: A mutation in plasma platelet-activating factor acetylhydrolase (Val279(Phe) is a genetic risk factor for stroke. Stroke 1997, 28:2417–2420.

    PubMed  CAS  Google Scholar 

  24. Unno N, Nakamura T, Kaneko H, et al.: Plasma platelet-activating factor acetylhydrolase deficiency is associated with atherosclerotic occlusive disease in Japan. J Vasc Surg 2000, 32:263–267.

    Article  PubMed  CAS  Google Scholar 

  25. Yamada Y, Izawa H, Ichihara S, et al.: Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002, 347:1916–1923.

    Article  PubMed  CAS  Google Scholar 

  26. Kruse S, Mao XQ, Heinzmann A, et al.: The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytic activities and are associated with atopy and asthma. Am J Hum Genet 2000, 66:1522–1530.

    Article  PubMed  CAS  Google Scholar 

  27. Abuzeid AM, Hawe E, Humphries SE, Talmund PJ: Association between the Ala379Val variant of the lipoprotein associated phospholipase A2 and risk of myocardial infarction in the north and south of Europe. Atherosclerosis 2003, 168:283–288.

    Article  PubMed  CAS  Google Scholar 

  28. Packard CJ, O’Reilly DS: Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 2000, 343:1148–1155.

    Article  PubMed  CAS  Google Scholar 

  29. Blake GJ, Dada N, Fox JC, et al.: A prospective evaluation of lipoprotein-associated phospholipase A2 levels and the risk of future cardiovascular events in women. J Am Coll Cardiol 2001, 38:1302–1306.

    Article  PubMed  CAS  Google Scholar 

  30. Ballantyne C, Hoogeveen R, Bang H, et al.: Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2004, 109:837–842.

    Article  PubMed  CAS  Google Scholar 

  31. Koenig W, Khuseyinova N, Lowel H, et al.: Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population. Results from the 14-year follow-up of a large cohort from southern Germany. Circulation 2004, 110:1903–1908.

    Article  PubMed  CAS  Google Scholar 

  32. Brilakis ES, McConnell JP, Lennon RJ, et al.: Association of lipoprotein-associated phospholipase A2 levels with coronary artery disease risk factors, angiographic coronary artery disease, and major adverse events at follow-up. Eur Heart J 2005, 26:137–144.

    Article  PubMed  CAS  Google Scholar 

  33. Winkler K, Winkelmann BR, Scharnagl H, et al.: Platelet-activating factor acetylhydrolase activity indicates angiographic coronary artery disease independently of systemic inflammation and other risk factors. Circulation 2005, 111:980–987.

    Article  PubMed  CAS  Google Scholar 

  34. Koenig W, Twardella D, Hermann B, et al.: Lipoprotein-associated phospholipase A2 predicts future cardiovascular events in patients with coronary heart disease independently of traditional risk factors, markers of inflammation, renal function, and hemodynamic stress. Arterioscler Thromb Vasc Biol 2006, 26:1586–1593.

    Article  PubMed  CAS  Google Scholar 

  35. O’Donoghue M, Morrow DA, Sabatine MS, et al.: Lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndromes in the PROVE IT-TIMI 22 (PRavastatin Or atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) trial. Circulation 2006, 113:1745–1752.

    Article  PubMed  CAS  Google Scholar 

  36. Ballantyne CM, Hoogeveen RC, Bang H, et al.: Lipoprotein-associated phospholipase A2, high-sensitivity c-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) Study. Arch Intern Med 2005, 165:2479–2484.

    Article  PubMed  CAS  Google Scholar 

  37. Oei HS, van der Meer IM, Hofman A, et al.: Lipoprotein-associated phospholipase a2 activity is associated with risk of coronary heart diseae and ischemic stroke: the Rotterdam study. Circulation 2005, 111:570–575.

    Article  PubMed  CAS  Google Scholar 

  38. Elkind MS, Coates K: Lipoprotein-associated phospholipase A2 and C-reactive protein as predictors of stroke recurrence and death: the Northern Manhattan study [abstract 29]. Presented at International Stroke Conference. Kissimmee, FL; February 2006.

  39. Cao JJ, Thach C, Manolio TA, et al.: C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly: the Cardiovascular Health study. Circulation 2003, 108:166–170.

    Article  PubMed  CAS  Google Scholar 

  40. Shahar E, Chambless LE, Rosamond WD, et al.: Plasma lipid profile and incident ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Stroke 2003, 34:623–631.

    Article  PubMed  Google Scholar 

  41. Heart Protection study. Effect of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20 536 people with cerebrovascular disease or other high risk conditions. Lancet 2004, 363:757–767.

    Article  CAS  Google Scholar 

  42. Bloomfield Rubins H, Davenport J, Babikian V, et al.; VA-HIT study group: Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol: the Veteran Affairs HDL Intervention Trial (VA-HIT). Circulation 2001, 103:2828–2833.

    Google Scholar 

  43. Yang EH, McConnell JP, Lennon RJ, et al.: Lipoprotein-associated phospholipase A2 is an independent marker for coronary endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol 2006, 26:106–111.

    Article  PubMed  CAS  Google Scholar 

  44. Kolodgie FD, Burke AP, Skorija KS, et al.: Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2006, 26:2523–2529.

    Article  PubMed  CAS  Google Scholar 

  45. Kudolo GB, Bressler P, Defronzo RA: Plasma PAF acetylhydrolase in non-insulin dependant diabetes mellitus and obesity: effect of hyperinsulinemia and lovastatin treatment. J Lipid Mediator Cell Signal 1997, 17:97–113.

    Article  CAS  Google Scholar 

  46. Winkler K, Abletshauser C, Friedrich I, et al.: Fluvastatin slow-release lowers platelet activating factor acetyl hydrolase activity: a placebo-controlled trial in patients with type 2 diabetes. J Clin Endocrinol Metab 2004, 89:1153–1159.

    Article  PubMed  CAS  Google Scholar 

  47. Albert MA, Glynn RJ, Wolfert RL, Ridker PM: The effect of statin therapy on lipoprotein associated phospholipase A2 levels. Atherosclerosis 2005, 182:193–198.

    Article  PubMed  CAS  Google Scholar 

  48. Tsimihodimos V, Karabina S, Tambaki AP, et al.: Atorvastatin preferentially reduces LDL-associated platelet-activating factor acetylhydrolase activity in dyslipidemias of type IIa and type IIb. Arterioscler Thromb Vasc Biol 2002, 22:306–311.

    Article  PubMed  CAS  Google Scholar 

  49. Schaefer EJ, McNamara JR, Asztalos BF, et al.: Effects of atorvastatin versus other statins on fasting and postprandial C-reactive protein and lipoprotein-associated phospholipase A2 in patients with coronary heart disease versus control subjects. Am J Cardiol 2005, 95:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  50. Anber V, Griffin BA, McConnell M, et al.: Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 1996, 124:261–271.

    Article  PubMed  CAS  Google Scholar 

  51. de Graaf J, Hak-Lemmers HL, Hectors MP, et al.: Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 1991, 11:298–306.

    PubMed  Google Scholar 

  52. Tsimihodimos V, Kakafika A, et al.: Fenofibrate induces HDL-associated PAF-AH but attenuates enzyme activity associated with apoB-containing lipoproteins. J Lipid Res 2003, 44:927–934.

    Article  PubMed  CAS  Google Scholar 

  53. Tsimihodimos V, Kostoula A, Kakafika A, et al.: Effect of fenofibrate on serum inflammatory markers in patients with high triglyceride values. J Cardiovasc Pharmacol Ther 2004, 9:27–33.

    Article  PubMed  CAS  Google Scholar 

  54. Booker ML: Lp-PLA2 inhibitors. IDrugs 2001, 4:1173–1177.

    PubMed  CAS  Google Scholar 

  55. Leach CA, Hickey DM, Ife RJ, et al.: Lipoprotein-associated PLA2 inhibition—a novel, non-lipid lowering strategy for atherosclerosis therapy. Farmaco 2001, 56:45–50.

    Article  PubMed  CAS  Google Scholar 

  56. Johnson A, Zalewski A, Janmohammed S, et al.: Lipoprotein associated phospholipase A2 (Lp-PLA2) activity, an emerging CV risk marker, can be inhibited in atherosclerotic lesions and plasma by novel pharmacologic intervention: the results of a multicenter clinical study. Circulation 2004, 110:III–590. Abstract.

    Google Scholar 

  57. Carpenter KL, Dennis IF, et al.: Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing effects of oxidized LDL on human monocyte-macrophage. FEBS Lett 2001: 505:357–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Nambi MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virani, S.S., Nambi, V. The role of lipoprotein-associated phospholipase A2 as a marker for atherosclerosis. Curr Atheroscler Rep 9, 97–103 (2007). https://doi.org/10.1007/s11883-007-0004-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-007-0004-9

Keywords

Navigation