Skip to main content
Log in

Mechanistic and Therapeutic Approaches to Occupational Exposure-Associated Allergic and Non-Allergic Asthmatic Disease

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Occupational lung disease, including asthma, is a significant cause of disability worldwide. The dose, exposure frequency, and nature of the causal agent influence the inflammatory pathomechanisms that inform asthma disease phenotype and progression. While surveillance, systems engineering, and exposure mitigation strategies are essential preventative considerations, no targeted medical therapies are currently available to ameliorate lung injury post-exposure and prevent chronic airway disease development.

Recent Findings

This article reviews contemporary understanding of allergic and non-allergic occupational asthma mechanisms. In addition, we discuss the available therapeutic options, patient-specific susceptibility and prevention measures, and recent scientific advances in post-exposure treatment conception.

Summary

The course of occupational lung disease that follows exposure is informed by individual predisposition, immunobiologic response, agent identity, overall environmental risk, and preventative workplace practices. When protective strategies fail, knowledge of underlying disease mechanisms is necessary to inform targeted therapy development to lessen occupational asthma disease severity and occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vlahovich KP, Sood A. A 2019 update on occupational lung diseases: a narrative review. Pulm Ther. 2021;7(1):75–87. https://doi.org/10.1007/s41030-020-00143-4.

    Article  PubMed  Google Scholar 

  2. Glaser MS, Webber MP, Zeig-Owens R, Weakley J, Liu X, Ye F, et al. Estimating the time interval between exposure to the World Trade Center disaster and incident diagnoses of obstructive airway disease. Am J Epidemiol. 2014;180(3):272–9. https://doi.org/10.1093/aje/kwu137.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Niles JK, Webber MP, Cohen HW, Hall CB, Zeig-Owens R, Ye F, et al. The respiratory pyramid: from symptoms to disease in World Trade Center exposed firefighters. Am J Ind Med. 2013;56(8):870–80. https://doi.org/10.1002/ajim.22171.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Guidotti TL, Prezant D, de la Hoz RE, Miller A. The evolving spectrum of pulmonary disease in responders to the World Trade Center tragedy. Am J Ind Med. 2011;54(9):649–60. https://doi.org/10.1002/ajim.20987.

    Article  PubMed  Google Scholar 

  5. Mazzei MA, Sartorelli P, Bagnacci G, Gentili F, Sisinni AG, Fausto A, et al. Occupational lung diseases: underreported diagnosis in radiological practice. Semin Ultrasound CT MR. 2019;40(1):36–50. https://doi.org/10.1053/j.sult.2018.10.019.

    Article  PubMed  Google Scholar 

  6. Anderson SE, Long C, Dotson GS. Occupational allergy. Eur Med J (Chelmsf). 2017;2(2):65–71.

    Article  PubMed  Google Scholar 

  7. Cormier M, Lemiere C. Occupational asthma. Int J Tuberc Lung Dis. 2020;24(1):8–21. https://doi.org/10.5588/ijtld.19.0301.

    Article  CAS  PubMed  Google Scholar 

  8. Raulf M. Occupational respiratory allergy: risk factors, diagnosis, and management. Handb Exp Pharmacol. 2022;268:213–25. https://doi.org/10.1007/164_2021_472.

    Article  CAS  PubMed  Google Scholar 

  9. Arts J. How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health. 2020;225:113469. https://doi.org/10.1016/j.ijheh.2020.113469.

    Article  CAS  PubMed  Google Scholar 

  10. Vandenplas O, Godet J, Hurdubaea L, Rifflart C, Suojalehto H, Wiszniewska M, et al. Are high- and low-molecular-weight sensitizing agents associated with different clinical phenotypes of occupational asthma? Allergy. 2019;74(2):261–72. https://doi.org/10.1111/all.13542.

    Article  PubMed  Google Scholar 

  11. Lipinska-Ojrzanowska A, Nowakowska-Swirta E, Wiszniewska M, Walusiak-Skorupa J. Bronchial response to high and low molecular weight occupational inhalant allergens. Allergy Asthma Immunol Res. 2020;12(1):164–70. https://doi.org/10.4168/aair.2020.12.1.164.

    Article  CAS  PubMed  Google Scholar 

  12. Platts-Mills TAE, Schuyler AJ, Erwin EA, Commins SP, Woodfolk JA. IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol. 2016;137(6):1662–70. https://doi.org/10.1016/j.jaci.2016.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidl-Hoffmann C, Nadeau K, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74(12):2293–311. https://doi.org/10.1111/all.13851.

    Article  PubMed  Google Scholar 

  14. Sahiner U, Akdis M, Akdis CA. 1 - Introduction to mechanisms of allergic diseases. In: O’Hehir RE, Holgate ST, Khurana Hershey GK, Sheikh A, editors. Allergy Essentials. 2nd ed. Philadelphia: Elsevier; 2022. p. 1–24.

    Google Scholar 

  15. Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, et al. EAACI allergen immunotherapy user’s guide. Pediatr Allergy Immunol. 2020;31(Suppl 25):1–101. https://doi.org/10.1111/pai.13189.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fulkerson PC, Rothenberg ME. Eosinophil development, disease involvement, and therapeutic suppression. Adv Immunol. 2018;138:1–34. https://doi.org/10.1016/bs.ai.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  17. Angkasekwinai P, Dong C. IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol. 2021;21(1):37–48. https://doi.org/10.1038/s41577-020-0396-0.

    Article  CAS  PubMed  Google Scholar 

  18. Kabashima K, Irie H. Interleukin-31 as a clinical target for pruritus treatment. Front Med (Lausanne). 2021;8:638325. https://doi.org/10.3389/fmed.2021.638325.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blomme EE, Provoost S, Bazzan E, Van Eeckhoutte HP, Roffel MP, Pollaris L, et al. Innate lymphoid cells in isocyanate-induced asthma: role of microRNA-155. Eur Respir J. 2020. https://doi.org/10.1183/13993003.01289-2019.

    Article  PubMed  Google Scholar 

  20. Karta MR, Broide DH, Doherty TA. Insights into group 2 innate lymphoid cells in human airway disease. Curr Allergy Asthma Rep. 2016;16(1):8. https://doi.org/10.1007/s11882-015-0581-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stanbery AG, Shuchi S, von Jakob M, Tait Wojno ED, Ziegler SF. TSLP, IL-33, and IL-25: not just for allergy and helminth infection. J Allergy Clin Immunol. 2022;150(6):1302–13. https://doi.org/10.1016/j.jaci.2022.07.003.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, et al. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021;12:586078. https://doi.org/10.3389/fimmu.2021.586078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez-Gonzalez I, Matha L, Steer CA, Ghaedi M, Poon GF, Takei F. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity. 2016;45(1):198–208. https://doi.org/10.1016/j.immuni.2016.06.017.

    Article  CAS  PubMed  Google Scholar 

  24. Kucuksezer UC, Ozdemir C, Akdis M, Akdis CA. Precision/personalized medicine in allergic diseases and asthma. Arch Immunol Ther Exp (Warsz). 2018;66(6):431–42. https://doi.org/10.1007/s00005-018-0526-6.

    Article  PubMed  Google Scholar 

  25. Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol. 2014;5:569. https://doi.org/10.3389/fimmu.2014.00569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, et al. After asthma: redefining airways diseases. Lancet. 2018;391(10118):350–400. https://doi.org/10.1016/S0140-6736(17)30879-6.

    Article  PubMed  Google Scholar 

  27. Lummus ZL, Wisnewski AV, Bernstein DI. Pathogenesis and disease mechanisms of occupational asthma. Immunol Allergy Clin North Am. 2011;31(4):699–716, vi. https://doi.org/10.1016/j.iac.2011.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lemiere C, Lavoie G, Doyen V, Vandenplas O. Irritant-induced asthma. J Allergy Clin Immunol Pract. 2022;10(11):2799–806. https://doi.org/10.1016/j.jaip.2022.06.045.

    Article  CAS  PubMed  Google Scholar 

  29. Froidure A, Mouthuy J, Durham SR, Chanez P, Sibille Y, Pilette C. Asthma phenotypes and IgE responses. Eur Respir J. 2016;47(1):304–19. https://doi.org/10.1183/13993003.01824-2014.

    Article  CAS  PubMed  Google Scholar 

  30. Sinyor B, Concepcion Perez L. Pathophysiology of asthma. StatPearls. Treasure Island (FL) 2022.

  31. Liu MC, Hubbard WC, Proud D, Stealey BA, Galli SJ, Kagey-Sobotka A, et al. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Cellular, mediator, and permeability changes. Am Rev Respir Dis. 1991;144(1):51–8. https://doi.org/10.1164/ajrccm/144.1.51.

    Article  CAS  PubMed  Google Scholar 

  32. Stewart AG, Tomlinson PR, Fernandes DJ, Wilson JW, Harris T. Tumor necrosis factor alpha modulates mitogenic responses of human cultured airway smooth muscle. Am J Respir Cell Mol Biol. 1995;12(1):110–9. https://doi.org/10.1165/ajrcmb.12.1.7529028.

    Article  CAS  PubMed  Google Scholar 

  33. Chapman DG, Irvin CG. Mechanisms of airway hyper-responsiveness in asthma: the past, present and yet to come. Clin Exp Allergy. 2015;45(4):706–19. https://doi.org/10.1111/cea.12506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou Y, Song W, Zhou L, Mao Y, Hong W. House dust mite induces Sonic hedgehog signaling that mediates epithelial-mesenchymal transition in human bronchial epithelial cells. Mol Med Rep. 2019;20(5):4674–82. https://doi.org/10.3892/mmr.2019.10707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. • Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, et al. Airway remodeling in asthma. Front Med (Lausanne). 2020;7:191. https://doi.org/10.3389/fmed.2020.00191. This is a thorough review describing mechanisms of disease progression associated with asthma exacerbation and allergic exposure. This discusses cutting-edge perspectives to further inform allergic respiratory disease mechanisms.

    Article  PubMed  Google Scholar 

  36. Evans CM, Kim K, Tuvim MJ, Dickey BF. Mucus hypersecretion in asthma: causes and effects. Curr Opin Pulm Med. 2009;15(1):4–11. https://doi.org/10.1097/MCP.0b013e32831da8d3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sumi Y, Foley S, Daigle S, L’Archeveque J, Olivenstein R, Letuve S, et al. Structural changes and airway remodelling in occupational asthma at a mean interval of 14 years after cessation of exposure. Clin Exp Allergy. 2007;37(12):1781–7. https://doi.org/10.1111/j.1365-2222.2007.02828.x.

    Article  CAS  PubMed  Google Scholar 

  38. Frew A, Chan H, Dryden P, Salari H, Lam S, Chan-Yeung M. Immunologic studies of the mechanisms of occupational asthma caused by western red cedar. J Allergy Clin Immunol. 1993;92(3):466–78. https://doi.org/10.1016/0091-6749(93)90126-z.

    Article  CAS  PubMed  Google Scholar 

  39. Perrin B, Cartier A, Ghezzo H, Grammer L, Harris K, Chan H, et al. Reassessment of the temporal patterns of bronchial obstruction after exposure to occupational sensitizing agents. J Allergy Clin Immunol. 1991;87(3):630–9. https://doi.org/10.1016/0091-6749(91)90381-w.

    Article  CAS  PubMed  Google Scholar 

  40. Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(Pt B):107598. https://doi.org/10.1016/j.intimp.2021.107598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernstein DI, Cartier A, Cote J, Malo JL, Boulet LP, Wanner M, et al. Diisocyanate antigen-stimulated monocyte chemoattractant protein-1 synthesis has greater test efficiency than specific antibodies for identification of diisocyanate asthma. Am J Respir Crit Care Med. 2002;166(4):445–50. https://doi.org/10.1164/rccm.2109018.

    Article  PubMed  Google Scholar 

  42. Maestrelli P, Del Prete GF, De Carli M, D’Elios MM, Saetta M, Di Stefano A, et al. CD8 T-cell clones producing interleukin-5 and interferon-gamma in bronchial mucosa of patients with asthma induced by toluene diisocyanate. Scand J Work Environ Health. 1994;20(5):376–81. https://doi.org/10.5271/sjweh.1383.

    Article  CAS  PubMed  Google Scholar 

  43. Frew A, Chang JH, Chan H, Quirce S, Noertjojo K, Keown P, et al. T-lymphocyte responses to plicatic acid-human serum albumin conjugate in occupational asthma caused by western red cedar. J Allergy Clin Immunol. 1998;101(6 Pt 1):841–7. https://doi.org/10.1016/S0091-6749(98)70313-6.

    Article  CAS  PubMed  Google Scholar 

  44. Shirakawa T, Kusaka Y, Fujimura N, Kato M, Heki S, Morimoto K. Hard metal asthma: cross immunological and respiratory reactivity between cobalt and nickel? Thorax. 1990;45(4):267–71. https://doi.org/10.1136/thx.45.4.267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raulf-Heimsoth M, Merget R, Rihs HP, Fohring M, Liebers V, Gellert B, et al. T-cell receptor repertoire expression in workers with occupational asthma due to platinum salt. Eur Respir J. 2000;16(5):871–8. https://doi.org/10.1183/09031936.00.16587100.

    Article  CAS  PubMed  Google Scholar 

  46. Paudyal P, Semple S, Niven R, Tavernier G, Ayres JG. Exposure to dust and endotoxin in textile processing workers. Ann Occup Hyg. 2011;55(4):403–9. https://doi.org/10.1093/annhyg/meq084.

    Article  CAS  PubMed  Google Scholar 

  47. Mitchell DC, Armitage TL, Schenker MB, Bennett DH, Tancredi DJ, Langer CE, et al. Particulate matter, endotoxin, and worker respiratory health on large Californian dairies. J Occup Environ Med. 2015;57(1):79–87. https://doi.org/10.1097/JOM.0000000000000304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cyprowski M, Sobala W, Buczynska A, Szadkowska-Stanczyk I. Endotoxin exposure and changes in short-term pulmonary function among sewage workers. Int J Occup Med Environ Health. 2015;28(5):803–11. https://doi.org/10.13075/ijomeh.1896.00460.

    Article  PubMed  Google Scholar 

  49. Nordgren TM, Bailey KL. Pulmonary health effects of agriculture. Curr Opin Pulm Med. 2016;22(2):144–9. https://doi.org/10.1097/MCP.0000000000000247.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wunschel J, Poole JA. Occupational agriculture organic dust exposure and its relationship to asthma and airway inflammation in adults. J Asthma. 2016;53(5):471–7. https://doi.org/10.3109/02770903.2015.1116089.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jumat MI, Hayati F, Rahim SSSA, Saupin S, Awang Lukman K, Jeffree MS, et al. Occupational lung disease: a narrative review of lung conditions from the workplace. Ann Med Surg (Lond). 2021;64:102245. https://doi.org/10.1016/j.amsu.2021.102245.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Puvvula J, Baccaglini L, Johnson A, Du Y, Bell JE, Rautiainen RH. Prevalence and risk factors for pulmonary conditions among farmers and ranchers in the Central United States. J Agromedicine. 2022;27(4):378–90. https://doi.org/10.1080/1059924X.2021.2025180.

    Article  PubMed  Google Scholar 

  53. Basinas I, Sigsgaard T, Kromhout H, Heederik D, Wouters IM, Schlunssen V. A comprehensive review of levels and determinants of personal exposure to dust and endotoxin in livestock farming. J Expo Sci Environ Epidemiol. 2015;25(2):123–37. https://doi.org/10.1038/jes.2013.83.

    Article  CAS  PubMed  Google Scholar 

  54. Kelly KJ, Poole JA. Pollutants in the workplace: effect on occupational asthma. J Allergy Clin Immunol. 2019;143(6):2014–5. https://doi.org/10.1016/j.jaci.2019.04.013.

    Article  PubMed  Google Scholar 

  55. Johnson AN, Harkema JR, Nelson AJ, Dickinson JD, Kalil J, Duryee MJ, et al. MyD88 regulates a prolonged adaptation response to environmental dust exposure-induced lung disease. Respir Res. 2020;21(1):97. https://doi.org/10.1186/s12931-020-01362-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dickinson JD, Sweeter JM, Staab EB, Nelson AJ, Bailey KL, Warren KJ, et al. MyD88 controls airway epithelial Muc5ac expression during TLR activation conditions from agricultural organic dust exposure. Am J Physiol Lung Cell Mol Physiol. 2019;316(2):L334–47. https://doi.org/10.1152/ajplung.00206.2018.

    Article  CAS  PubMed  Google Scholar 

  57. Bauer C, Kielian T, Wyatt TA, Romberger DJ, West WW, Gleason AM, et al. Myeloid differentiation factor 88-dependent signaling is critical for acute organic dust-induced airway inflammation in mice. Am J Respir Cell Mol Biol. 2013;48(6):781–9. https://doi.org/10.1165/rcmb.2012-0479OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tarlo SM, Lemiere C. Occupational asthma. N Engl J Med. 2014;370(7):640–9. https://doi.org/10.1056/NEJMra1301758.

    Article  CAS  PubMed  Google Scholar 

  59. Basketter DA, Kruszewski FH, Mathieu S, Kirchner DB, Panepinto A, Fieldsend M, et al. Managing the risk of occupational allergy in the enzyme detergent industry. J Occup Environ Hyg. 2015;12(7):431–7. https://doi.org/10.1080/15459624.2015.1011741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dotson GS, Maier A, Siegel PD, Anderson SE, Green BJ, Stefaniak AB, et al. Setting occupational exposure limits for chemical allergens–understanding the challenges. J Occup Environ Hyg. 2015;12(Suppl 1):S82-98. https://doi.org/10.1080/15459624.2015.1072277.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Roberts G, Ollert M, Aalberse R, Austin M, Custovic A, DunnGalvin A, et al. A new framework for the interpretation of IgE sensitization tests. Allergy. 2016;71(11):1540–51. https://doi.org/10.1111/all.12939.

    Article  CAS  PubMed  Google Scholar 

  62. Hofmaier S, Hatzler L, Rohrbach A, Panetta V, Hakimeh D, Bauer CP, et al. “Default” versus “pre-atopic” IgG responses to foodborne and airborne pathogenesis-related group 10 protein molecules in birch-sensitized and nonatopic children. J Allergy Clin Immunol. 2015;135(5):1367-74.e1-8. https://doi.org/10.1016/j.jaci.2014.09.048.

    Article  CAS  PubMed  Google Scholar 

  63. Huang X, Tsilochristou O, Perna S, Hofmaier S, Cappella A, Bauer CP, et al. Evolution of the IgE and IgG repertoire to a comprehensive array of allergen molecules in the first decade of life. Allergy. 2018;73(2):421–30. https://doi.org/10.1111/all.13269.

    Article  CAS  PubMed  Google Scholar 

  64. Holt PG, Strickland D, Bosco A, Belgrave D, Hales B, Simpson A, et al. Distinguishing benign from pathologic TH2 immunity in atopic children. J Allergy Clin Immunol. 2016;137(2):379–87. https://doi.org/10.1016/j.jaci.2015.08.044.

    Article  CAS  PubMed  Google Scholar 

  65. van de Veen W, Akdis M. Role of IgG(4) in IgE-mediated allergic responses. J Allergy Clin Immunol. 2016;138(5):1434–5. https://doi.org/10.1016/j.jaci.2016.07.022.

    Article  CAS  PubMed  Google Scholar 

  66. Sonntag HJ, Filippi S, Pipis S, Custovic A. Blood biomarkers of sensitization and asthma. Front Pediatr. 2019;7:251. https://doi.org/10.3389/fped.2019.00251.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Quirce S, Sastre J. Occupational asthma: clinical phenotypes, biomarkers, and management. Curr Opin Pulm Med. 2019;25(1):59–63. https://doi.org/10.1097/MCP.0000000000000535.

    Article  PubMed  Google Scholar 

  68. Engel J, van Kampen V, Lotz A, Abramowski J, Gering V, Hagemeyer O, et al. An increase of fractional exhaled nitric oxide after specific inhalation challenge is highly predictive of occupational asthma. Int Arch Occup Environ Health. 2018;91(7):799–809. https://doi.org/10.1007/s00420-018-1325-4.

    Article  CAS  PubMed  Google Scholar 

  69. Broide DH, Paine MM, Firestein GS. Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest. 1992;90(4):1414–24. https://doi.org/10.1172/JCI116008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandez-Nieto M, Sastre B, Sastre J, Lahoz C, Quirce S, Madero M, et al. Changes in sputum eicosanoids and inflammatory markers after inhalation challenges with occupational agents. Chest. 2009;136(5):1308–15. https://doi.org/10.1378/chest.09-0103.

    Article  CAS  PubMed  Google Scholar 

  71. Panganiban RP, Wang Y, Howrylak J, Chinchilli VM, Craig TJ, August A, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137(5):1423–32. https://doi.org/10.1016/j.jaci.2016.01.029.

    Article  CAS  PubMed  Google Scholar 

  72. Weidner J, Bartel S, Kilic A, Zissler UM, Renz H, Schwarze J, et al. Spotlight on microRNAs in allergy and asthma. Allergy. 2021;76(6):1661–78. https://doi.org/10.1111/all.14646.

    Article  CAS  PubMed  Google Scholar 

  73. • Hao Y, Wang B, Zhao J, Wang P, Zhao Y, Wang X, et al. Identification of gene biomarkers with expression profiles in patients with allergic rhinitis. Allergy Asthma Clin Immunol. 2022;18(1):20. https://doi.org/10.1186/s13223-022-00656-4. This identified gene biomarkers in nasal mucosa and blood associated with allergic rhinitis that could have beneficial application in diagnosing occupational allergy and/or monitoring worker sensitization to occupational allergens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baos S, Calzada D, Cremades-Jimeno L, Sastre J, Picado C, Quiralte J, et al. Nonallergic asthma and its severity: biomarkers for its discrimination in peripheral samples. Front Immunol. 2018;9:1416. https://doi.org/10.3389/fimmu.2018.01416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242(1):10–30. https://doi.org/10.1111/j.1600-065X.2011.01029.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kontakioti E, Domvri K, Papakosta D, Daniilidis M. HLA and asthma phenotypes/endotypes: a review. Hum Immunol. 2014;75(8):930–9. https://doi.org/10.1016/j.humimm.2014.06.022.

    Article  CAS  PubMed  Google Scholar 

  77. Taylor AJ. HLA phenotype and exposure in development of occupational asthma. Ann Allergy Asthma Immunol. 2003;90(5 Suppl 2):24–7. https://doi.org/10.1016/s1081-1206(10)61644-4.

    Article  CAS  PubMed  Google Scholar 

  78. Jeal H, Draper A, Jones M, Harris J, Welsh K, Taylor AN, et al. HLA associations with occupational sensitization to rat lipocalin allergens: a model for other animal allergies? J Allergy Clin Immunol. 2003;111(4):795–9. https://doi.org/10.1067/mai.2003.176.

    Article  CAS  PubMed  Google Scholar 

  79. Horne C, Quintana PJ, Keown PA, Dimich-Ward H, Chan-Yeung M. Distribution of DRB1 and DQB1 HLA class II alleles in occupational asthma due to western red cedar. Eur Respir J. 2000;15(5):911–4. https://doi.org/10.1034/j.1399-3003.2000.15e17.x.

    Article  CAS  PubMed  Google Scholar 

  80. Bernstein DI, Lummus ZL, Kesavalu B, Yao J, Kottyan L, Miller D, et al. Genetic variants with gene regulatory effects are associated with diisocyanate-induced asthma. J Allergy Clin Immunol. 2018;142(3):959–69. https://doi.org/10.1016/j.jaci.2018.06.022.

    Article  CAS  PubMed  Google Scholar 

  81. • Laulajainen-Hongisto A, Lyly A, Hanif T, Dhaygude K, Kankainen M, Renkonen R, et al. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy. 2020;10(1):45. https://doi.org/10.1186/s13601-020-00347-6. This is a comprehensive assessment of loci and genes identified in GWAS studies implicated in allergic respiratory disease risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bonnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45(8):902–6. https://doi.org/10.1038/ng.2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bonnelykke K, Sparks R, Waage J, Milner JD. Genetics of allergy and allergic sensitization: common variants, rare mutations. Curr Opin Immunol. 2015;36:115–26. https://doi.org/10.1016/j.coi.2015.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol. 2015;159(2):122–7. https://doi.org/10.1016/j.clim.2015.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18(4):538–46. https://doi.org/10.1038/nm.2657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Adami AJ, Bracken SJ. Breathing better through bugs: asthma and the microbiome. Yale J Biol Med. 2016;89(3):309–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pascal M, Perez-Gordo M, Caballero T, Escribese MM, Lopez Longo MN, Luengo O, et al. Microbiome and allergic diseases. Front Immunol. 2018;9:1584. https://doi.org/10.3389/fimmu.2018.01584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70. https://doi.org/10.1016/j.cell.2012.01.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lau A, Tarlo SM. Update on the management of occupational asthma and work-exacerbated asthma. Allergy Asthma Immunol Res. 2019;11(2):188–200. https://doi.org/10.4168/aair.2019.11.2.188.

    Article  PubMed  Google Scholar 

  90. Hossenbaccus L, Linton S, Garvey S, Ellis AK. Towards definitive management of allergic rhinitis: best use of new and established therapies. Allergy Asthma Clin Immunol. 2020;16:39. https://doi.org/10.1186/s13223-020-00436-y.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Erlandson G, Magzamen S, Sharp JL, Mitra S, Jones K, Poole JA, et al. Preliminary investigation of a hypertonic saline nasal rinse as a hygienic intervention in dairy workers. J Occup Environ Hyg. 2023;20(1):14–22. https://doi.org/10.1080/15459624.2022.2137297.

    Article  CAS  PubMed  Google Scholar 

  92. •• Poole JA, Gaurav R, Schwab A, Nelson AJ, Gleason A, Romberger DJ, et al. Post-endotoxin exposure-induced lung inflammation and resolution consequences beneficially impacted by lung-delivered IL-10 therapy. Sci Rep. 2022;12(1):17338. https://doi.org/10.1038/s41598-022-22346-2. This demonstrated that short-term, lung-delivered rIL-10 favorably hastened inflammatory recovery processes following acute, high-dose inhalant LPS exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wyatt TA, Nemecek M, Chandra D, DeVasure JM, Nelson AJ, Romberger DJ, et al. Organic dust-induced lung injury and repair: bi-directional regulation by TNFalpha and IL-10. J Immunotoxicol. 2020;17(1):153–62. https://doi.org/10.1080/1547691X.2020.1776428.

    Article  CAS  PubMed  Google Scholar 

  94. Garantziotis S, Brass DM, Savov J, Hollingsworth JW, McElvania-TeKippe E, Berman K, et al. Leukocyte-derived IL-10 reduces subepithelial fibrosis associated with chronically inhaled endotoxin. Am J Respir Cell Mol Biol. 2006;35(6):662–7. https://doi.org/10.1165/rcmb.2006-0055OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller RL, Grayson MH, Strothman K. Advances in asthma: new understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol. 2021;148(6):1430–41. https://doi.org/10.1016/j.jaci.2021.10.001.

    Article  CAS  PubMed  Google Scholar 

  96. Malipiero G, Melone G, Puggioni F, Pawankar R, Heffler E, Paoletti G. Allergen immunotherapy and biologics in respiratory allergy: friends or foes? Curr Opin Allergy Clin Immunol. 2021;21(1):16–23. https://doi.org/10.1097/ACI.0000000000000707.

    Article  CAS  PubMed  Google Scholar 

  97. Durham SR, Walker SM, Varga EM, Jacobson MR, O’Brien F, Noble W, et al. Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med. 1999;341(7):468–75. https://doi.org/10.1056/NEJM199908123410702.

    Article  CAS  PubMed  Google Scholar 

  98. Globinska A, Boonpiyathad T, Satitsuksanoa P, Kleuskens M, van de Veen W, Sokolowska M, et al. Mechanisms of allergen-specific immunotherapy: diverse mechanisms of immune tolerance to allergens. Ann Allergy Asthma Immunol. 2018;121(3):306–12. https://doi.org/10.1016/j.anai.2018.06.026.

    Article  CAS  PubMed  Google Scholar 

  99. Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol. 2017;140(6):1485–98. https://doi.org/10.1016/j.jaci.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  100. Nikolov G, Todordova Y, Emilova R, Hristova D, Nikolova M, Petrunov B. Allergen-specific IgE and IgG4 as biomarkers for immunologic changes during subcutaneous allergen immunotherapy. Antibodies (Basel). 2021. https://doi.org/10.3390/antib10040049.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Stanic B, van de Veen W, Wirz OF, Ruckert B, Morita H, Sollner S, et al. IL-10-overexpressing B cells regulate innate and adaptive immune responses. J Allergy Clin Immunol. 2015;135(3):771-80.e8. https://doi.org/10.1016/j.jaci.2014.07.041.

    Article  CAS  PubMed  Google Scholar 

  102. Lao-Araya M, Steveling E, Scadding GW, Durham SR, Shamji MH. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol. 2014;134(5):1193-5.e4. https://doi.org/10.1016/j.jaci.2014.07.029.

    Article  PubMed  Google Scholar 

  103. Palomares O, Akdis M, Martin-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev. 2017;278(1):219–36. https://doi.org/10.1111/imr.12555.

    Article  CAS  PubMed  Google Scholar 

  104. Esteban-Gorgojo I, Rial MJ, Sastre J. Infrequent treatments for occupational asthma: immunotherapy and biological therapy. Curr Treat Options Allergy. 2017;4(2):118–28. https://doi.org/10.1007/s40521-017-0125-5.

    Article  Google Scholar 

  105. Armentia A, Martin-Santos JM, Quintero A, Fernandez A, Barber D, Alonso E, et al. Bakers’ asthma: prevalence and evaluation of immunotherapy with a wheat flour extract. Ann Allergy. 1990;65(4):265–72.

    CAS  PubMed  Google Scholar 

  106. Cirla AM, Lorenzini RA, Cirla PE. Specific immunotherapy and relocation in occupational allergic bakers. G Ital Med Lav Ergon. 2007;29(3 Suppl):443–5.

    CAS  PubMed  Google Scholar 

  107. Moscato G, Pala G, Sastre J. Specific immunotherapy and biological treatments for occupational allergy. Curr Opin Allergy Clin Immunol. 2014;14(6):576–81. https://doi.org/10.1097/ACI.0000000000000105.

    Article  CAS  PubMed  Google Scholar 

  108. Leynadier F, Herman D, Vervloet D, Andre C. Specific immunotherapy with a standardized latex extract versus placebo in allergic healthcare workers. J Allergy Clin Immunol. 2000;106(3):585–90. https://doi.org/10.1067/mai.2000.109173.

    Article  CAS  PubMed  Google Scholar 

  109. Sastre J, Fernandez-Nieto M, Rico P, Martin S, Barber D, Cuesta J, et al. Specific immunotherapy with a standardized latex extract in allergic workers: a double-blind, placebo-controlled study. J Allergy Clin Immunol. 2003;111(5):985–94. https://doi.org/10.1067/mai.2003.1390.

    Article  CAS  PubMed  Google Scholar 

  110. Nettis E, Delle Donne P, Di Leo E, Fantini P, Passalacqua G, Bernardini R, et al. Latex immunotherapy: state of the art. Ann Allergy Asthma Immunol. 2012;109(3):160–5. https://doi.org/10.1016/j.anai.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  111. Wahn U, Siraganian RP. Efficacy and specificity of immunotherapy with laboratory animal allergen extracts. J Allergy Clin Immunol. 1980;65(6):413–21. https://doi.org/10.1016/0091-6749(80)90233-x.

    Article  CAS  PubMed  Google Scholar 

  112. Hansen I, Hormann K, Klimek L. Specific immunotherapy in inhalative allergy to rat epithelium. Laryngorhinootologie. 2004;83(8):512–5. https://doi.org/10.1055/s-2004-814505.

    Article  CAS  PubMed  Google Scholar 

  113. Lavaud F, Bonniaud P, Dalphin JC, Leroyer C, Muller D, Tannous R, et al. Usefulness of omalizumab in ten patients with severe occupational asthma. Allergy. 2013;68(6):813–5. https://doi.org/10.1111/all.12149.

    Article  CAS  PubMed  Google Scholar 

  114. Caruso C, Gencarelli G, Gaeta F, Valluzzi RL, Rumi G, Romano A. Efficacy of omalizumab treatment in a man with occupational asthma and eosinophilic granulomatosis with polyangioitis. Ann Allergy Asthma Immunol. 2018;120(2):209–11. https://doi.org/10.1016/j.anai.2017.10.034.

    Article  PubMed  Google Scholar 

  115. Olivieri M, Biscardo CA, Turri S, Perbellini L. Omalizumab in persistent severe bakers’ asthma. Allergy. 2008;63(6):790–1. https://doi.org/10.1111/j.1398-9995.2008.01702.x.

    Article  CAS  PubMed  Google Scholar 

  116. Kopp MV, Hamelmann E, Zielen S, Kamin W, Bergmann KC, Sieder C, et al. Combination of omalizumab and specific immunotherapy is superior to immunotherapy in patients with seasonal allergic rhinoconjunctivitis and co-morbid seasonal allergic asthma. Clin Exp Allergy. 2009;39(2):271–9. https://doi.org/10.1111/j.1365-2222.2008.03121.x.

    Article  CAS  PubMed  Google Scholar 

  117. •• Zhang Y, Xi L, Gao Y, Huang Y, Cao F, Xiong W, et al. Omalizumab is effective in the preseasonal treatment of seasonal allergic rhinitis. Clin Transl Allergy. 2022;12(1):e12094. https://doi.org/10.1002/clt2.12094. This showed that prophylactic administration of single-dose omalizumab diminished seasonal allergy symptoms; findings are relevant for other occupational manifestations of allergic respiratory disease.

  118. De Matteis S, Heederik D, Burdorf A, Colosio C, Cullinan P, Henneberger PK, et al. Current and new challenges in occupational lung diseases. Eur Respir Rev. 2017. https://doi.org/10.1183/16000617.0080-2017.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Schwab.

Ethics declarations

Conflict of Interest

The National Institute for Occupational Safety and Health grant U54OH010162 (JAP, ADS) and R01OH012045 (JAP), Department of Defense #PR200793 (JAP). Central States Center of Agricultural Safety and Health (CS-CASH). JAP has received research reagent from AstraZeneca (no monies) and is a site investigator for clinical studies for Takeda, GlaxoSmithKline, and AstraZeneca (no monies).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwab, A.D., Poole, J.A. Mechanistic and Therapeutic Approaches to Occupational Exposure-Associated Allergic and Non-Allergic Asthmatic Disease. Curr Allergy Asthma Rep 23, 313–324 (2023). https://doi.org/10.1007/s11882-023-01079-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01079-w

Keywords

Navigation