Skip to main content

Advertisement

Log in

Autoimmune Lymphoproliferative Syndrome: an Update and Review of the Literature

  • AUTOIMMUNITY (TK TARRANT, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Autoimmune lymphoproliferative syndrome (ALPS) is characterized by immune dysregulation due to a defect in lymphocyte apoptosis. The clinical manifestations may be noted in multiple family members and include lymphadenopathy, splenomegaly, increased risk of lymphoma, and autoimmune disease, which typically involves hematopoietic cell lines manifesting as multilineage cytopenias. Since the disease was first characterized in the early 1990s, there have been many advances in the diagnosis and management of this syndrome. The inherited genetic defect of many ALPS patients has involved (FAS) pathway signaling proteins, but there remain those patients who carry undefined genetic defects. Despite ALPS having historically been considered a primary immune defect presenting in early childhood, adult onset presentation is increasingly becoming recognized and more so in genetically undefined patients and those with somatic FAS mutations. Thus, future research may identify novel pathways and/or regulatory proteins important in lymphocyte activation and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rao VK, Oliveira JB. How I treat autoimmune lymphoproliferative syndrome. Blood. 2011;118(22):5741–51. Discusses management of various complications related to ALPS based on study of a large cohort of ALPS patients.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Fisher GH et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935–46.

    Article  CAS  PubMed  Google Scholar 

  3. Straus SE et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98(1):194–200.

    Article  CAS  PubMed  Google Scholar 

  4. Hauck F et al. Somatic loss of heterozygosity, but not haploinsufficiency alone, leads to full-blown autoimmune lymphoproliferative syndrome in 1 of 12 family members with FAS start codon mutation. Clin Immunol. 2013;147(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  5. Del-Rey M et al. A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood. 2006;108(4):1306–12.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu S et al. Genetic alterations in caspase-10 may be causative or protective in autoimmune lymphoproliferative syndrome. Hum Genet. 2006;119(3):284–94.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 1999;98(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  8. Lambotte O et al. Diagnosis of autoimmune lymphoproliferative syndrome caused by FAS deficiency in adults. Haematologica. 2013;98(3):389–92.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Deutsch M, Tsopanou E, Dourakis SP. The autoimmune lymphoproliferative syndrome (Canale-Smith) in adulthood. Clin Rheumatol. 2004;23(1):43–4.

    Article  CAS  PubMed  Google Scholar 

  10. Rudman Spergel A et al. Autoimmune lymphoproliferative syndrome misdiagnosed as hemophagocytic lymphohistiocytosis. Pediatrics. 2013;132(5):e1440–4.

    Article  PubMed  Google Scholar 

  11. Magerus-Chatinet A et al. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J Clin Investig. 2011;121(1):106–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Neven B et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118(18):4798–807.

    Article  CAS  PubMed  Google Scholar 

  13. Kim YJ et al. Eosinophilia is associated with a higher mortality rate among patients with autoimmune lymphoproliferative syndrome. Am J Hematol. 2007;82(7):615–24.

    Article  CAS  PubMed  Google Scholar 

  14. Caminha I et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2010;125(4):946–9.e6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bowen RA et al. Elevated vitamin B(1)(2) levels in autoimmune lymphoproliferative syndrome attributable to elevated haptocorrin in lymphocytes. Clin Biochem. 2012;45(6):490–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Oliveira JB et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35–40. Discusses current diagnostic criteria for ALPS.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Desai NK et al. Autoimmune lymphoproliferative disorder in an adult patient. J Postgrad Med. 2011;57(2):131–3.

    Article  CAS  PubMed  Google Scholar 

  18. Rao VK et al. Use of rituximab for refractory cytopenias associated with autoimmune lymphoproliferative syndrome (ALPS). Pediatr Blood Cancer. 2009;52(7):847–52.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wei A, Cowie T. Rituximab responsive immune thrombocytopenic purpura in an adult with underlying autoimmune lymphoproliferative syndrome due to a splice-site mutation (IVS7 + 2T > C) affecting the Fas gene. Eur J Haematol. 2007;79(4):363–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Arora S et al. Autoimmune lymphoproliferative syndrome: response to mycophenolate mofetil and pyrimethamine/sulfadoxine in a 5-year-old child. Indian J Hematol Blood Transfus. 2011;27(2):101–3.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Teachey DT et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol. 2009;145(1):101–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Teachey DT et al. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood. 2006;108(6):1965–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bajwa R, Savelli S, Gross T. Pentostatin for treatment of refractory autoimmune lymphoproliferative syndrome. Pediatr Blood Cancer. 2011;57(2):336–7.

    Article  PubMed  Google Scholar 

  24. Kotb R et al. Efficacy of mycophenolate mofetil in adult refractory auto-immune cytopenias: a single center preliminary study. Eur J Haematol. 2005;75(1):60–4.

    Article  CAS  PubMed  Google Scholar 

  25. Farruggia P et al. Effectiveness of cyclosporine and mycophenolate mofetil in a child with refractory evans syndrome. Pediatr Rep. 2011;3(2):e15.

    PubMed Central  PubMed  Google Scholar 

  26. Liang Y et al. Rituximab for children with immune thrombocytopenia: a systematic review. PLoS One. 2012;7(5):e36698.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Price S et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood. 2014;123(13):1989–99. Discusses long term follow-up, including morbidity and mortality, of a large cohort of ALPS patients.

    Article  CAS  PubMed  Google Scholar 

  28. Price S, et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood. 2014.

  29. Boggio E, et al. IL-17 protects T cells from apoptosis and contributes to development of ALPS-like phenotypes. Blood. 2013.

  30. Benkerrou M et al. Correction of Fas (CD95) deficiency by haploidentical bone marrow transplantation. Eur J Immunol. 1997;27(8):2043–7.

    Article  CAS  PubMed  Google Scholar 

  31. Dimopoulou MN et al. Successful treatment of autoimmune lymphoproliferative syndrome and refractory autoimmune thrombocytopenic purpura with a reduced intensity conditioning stem cell transplantation followed by donor lymphocyte infusion. Bone Marrow Transplant. 2007;40(6):605–6.

    Article  CAS  PubMed  Google Scholar 

  32. Sleight BJ et al. Correction of autoimmune lymphoproliferative syndrome by bone marrow transplantation. Bone Marrow Transplant. 1998;22(4):375–80.

    Article  CAS  PubMed  Google Scholar 

  33. Venkataraman G et al. Development of disseminated histiocytic sarcoma in a patient with autoimmune lymphoproliferative syndrome and associated Rosai-Dorfman disease. Am J Surg Pathol. 2010;34(4):589–94.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and 1R03AR059286.

Compliance with Ethics Guidelines

Conflict of Interest

Shaili Shah, Eveline Wu, V. Koneti Rao, and Teresa K. Tarrant declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa K. Tarrant.

Additional information

This article is part of the Topical Collection on Autoimmunity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S., Wu, E., Rao, V.K. et al. Autoimmune Lymphoproliferative Syndrome: an Update and Review of the Literature. Curr Allergy Asthma Rep 14, 462 (2014). https://doi.org/10.1007/s11882-014-0462-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0462-4

Keywords

Navigation