Skip to main content

Advertisement

Log in

The Molecular Basis of Peanut Allergy

  • ALLERGENS (RK BUSH AND JA WOODFOLK, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Peanut allergens can trigger a potent and sometimes dangerous immune response in an increasing number of people. The molecular structures of these allergens form the basis for understanding this response. This review describes the currently known peanut allergen structures and discusses how modifications both enzymatic and non-enzymatic affect digestion, innate immune recognition, and IgE interactions. The allergen structures help explain cross-reactivity among allergens from different sources, which is useful in improving patient diagnostics. Surprisingly, it was recently noted that similar short peptide sequences among unrelated peanut allergens could also be a source of cross-reactivity. The molecular features of peanut allergens continue to inform predictions and provide new research directions in the study of allergic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liu AH, Jaramillo R, Sicherer SH, Wood RA, Bock SA, Burks AW, et al. National prevalence and risk factors for food allergy and relationship to asthma: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol. 2010;126(4):798 e13–806 e13.

    Article  Google Scholar 

  2. Aalberse RC, Crameri R. IgE-binding epitopes: a reappraisal. Allergy. 2011 Oct;66(10):1261–74. Thought-provoking summary of IgE antibodies.

  3. Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Structure of allergens and structure based epitope predictions. Methods. 2013 Jul 23. Excellent review of the structural biology of allergens and in particular the mapping the IgE epitopes.

  4. Pomes A, Relevant B. Cell epitopes in allergic disease. Int Arch Allergy Immunol. 2010;152(1):1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol. 2007;120(3):518–25.

    Article  CAS  PubMed  Google Scholar 

  6. Breiteneder H, Radauer C. A classification of plant food allergens. J Allergy Clin Immunol. 2004;113(5):821–30.

    Article  CAS  PubMed  Google Scholar 

  7. Chruszcz M, Maleki SJ, Majorek KA, Demas M, Bublin M, Solberg R, et al. Structural and immunologic characterization of Ara h 1, a major peanut allergen. J Biol Chem. 2011 Nov 11;286(45):39318-27. First structures of Ara h 1 and Ara h 3.

  8. Cabanos C, Urabe H, Tandang-Silvas MR, Utsumi S, Mikami B, Maruyama N. Crystal structure of the major peanut allergen Ara h 1. Mol Immunol. 2011 Oct-Nov;49(1–2):115–23. First structures of Ara h 1 and Ara h 3.

  9. Mueller GA, Gosavi RA, Pomes A, Wunschmann S, Moon AF, London RE, et al. Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Allergy. 2011;66(7):878–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lehmann K, Schweimer K, Reese G, Randow S, Suhr M, Becker WM, et al. Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J. 2006;395(3):463–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang Y, Fu TJ, Howard A, Kothary MH, McHugh TH, Zhang YZ. Crystal structure of peanut (Arachis hypogaea) Allergen Ara h 5. J Agric Food Chem. 2013;61(7):1573–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hurlburt BK, Offermann LR, McBride JK, Majorek KA, Maleki SJ, Chruszcz M. Structure and function of the peanut panallergen Ara h 8. J Biol Chem. 2013 Nov 19.

  13. Jin T, Guo F, Chen YW, Howard A, Zhang YZ. Crystal structure of Ara h 3, a major allergen in peanut. Mol Immunol. 2009;46(8–9):1796–804.

    Article  CAS  PubMed  Google Scholar 

  14. Dunwell JM. Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng. 1998;15:1–32.

    Article  CAS  Google Scholar 

  15. Dunwell JM, Purvis A, Khuri S. Cupins: the most functionally diverse protein superfamily? Phytochemistry. 2004;65(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  16. Van Boxtel EL, Van Beers MMC, Koppelman SJ, Van den Broek LAM, Gruppen H. Allergen Ara h 1 occurs in peanuts as a large oligomer rather than as a trimer. J Agric Food Chem. 2006;54(19):7180–6.

    Article  PubMed  Google Scholar 

  17. Maleki SJ, Chung SY, Champagne ET, Raufman JP. The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol. 2000;106(4):763–8.

    Article  CAS  PubMed  Google Scholar 

  18. Dodo HW, Viquez OM, Maleki SJ, Konan KN. cDNA clone of a putative peanut (Arachis hypogaea L.) trypsin inhibitor has homology with peanut allergens Ara h 3 and Ara h 4. J Agr. Food Chem. 2004;52(5):1404–9.

    Article  CAS  Google Scholar 

  19. Guo B, Liang X, Chung SY, Maleki SJ. Proteomic screening points to the potential importance of Ara h 3 basic subunit in allergenicity of peanut. Inflamm Allergy Drug Targets. 2008;7(3):163–6.

    Article  CAS  PubMed  Google Scholar 

  20. Guo BZ, Liang XQ, Chung SY, Holbrook CC, Maleki SJ. Proteomic analysis of peanut seed storage proteins and genetic variation in a potential peanut allergen. Protein Pept Lett. 2008;15(6):567–77.

    Article  CAS  PubMed  Google Scholar 

  21. Breiteneder H, Mills ENC. Plant food allergens - structural and functional aspects of allergenicity. Biotechnol Adv. 2005;23(6):395–9.

    Article  CAS  PubMed  Google Scholar 

  22. Holm L, Kaariainen S, Rosenstrom P, Schenkel A. Searching protein structure databases with DaliLite v. 3. Bioinformatics. 2008;24(23):2780–1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Maleki SJ, Viquez O, Jacks T, Dodo H, Champagne ET, Chung SY, et al. The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. J Allergy Clin Immunol. 2003;112(1):190–5.

    Article  CAS  PubMed  Google Scholar 

  24. Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy. 2004;34(4):583–90.

    Article  CAS  PubMed  Google Scholar 

  25. Palmer GW, Dibbern DA, Burks AW, Bannon GA, Bock SA, Porterfield HS, et al. Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clin Immunol. 2005;115(3):302–12.

    Article  CAS  PubMed  Google Scholar 

  26. Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, et al. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys. 1997;342(2):244–53.

    Article  CAS  PubMed  Google Scholar 

  27. Chen XN, Wang Q, El-Mezayen R, Zhuang YH, Dreskin SC. Ara h 2 and Ara h 6 have similar allergenic activity and are substantially redundant. Int Arch Allergy Immunol. 2013;160(3):251–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Koid AE, Chapman MD, Hamilton RG, Van Ree R, Versteeg SA, Dreskin SC, et al. Ara h 6 complements Ara h 2 as an important marker for IgE reactivity to peanut. J Agric Food Chem. 2013 Dec 11.

  29. Birbach A. Profilin, a multi-modal regulator of neuronal plasticity. Bioessays. 2008;30(10):994–1002.

    Article  CAS  PubMed  Google Scholar 

  30. Ramachandran S, Christensen HEM, Ishimaru Y, Dong CH, Chao-Ming W, Cleary AL, et al. Profilin plays a role in cell elongation, cell shape maintenance, and flowering in arabidopsis. Plant Physiol. 2000;124(4):1637–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010;6(1):1.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Fernandes H, Michalska K, Sikorski M, Jaskolski M. Structural and functional aspects of PR-10 proteins. FEBS J. 2013;280(5):1169–99.

    Article  CAS  PubMed  Google Scholar 

  33. Kofler S, Asam C, Eckhard U, Wallner M, Ferreira F, Brandstetter H. Crystallographically mapped ligand binding differs in high and low IgE binding isoforms of birch pollen Allergen Bet v 1. J Mol Biol. 2012;422(1):109–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Flicker S, Steinberger P, Norderhaug L, Sperr WR, Majlesi Y, Valent P, et al. Conversion of grass pollen allergen-specific human IgE into a protective IgG(1) antibody. Eur J Immunol. 2002;32(8):2156–62.

    Article  CAS  PubMed  Google Scholar 

  35. Sicherer SH, Wood RA, Immunology SA. Allergy testing in childhood: using allergen-specific IgE tests. Pediatrics. 2012;129(1):193–7.

    Article  PubMed  Google Scholar 

  36. Gupta RS, Dyer AA, Jain N, Greenhawt MJ. Childhood food allergies: current diagnosis, treatment, and management strategies. Mayo Clin Proc. 2013;88(5):512–26.

    Article  PubMed  Google Scholar 

  37. Radauer C, Breiteneder H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol. 2006;117(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  38. Bublin M, Kostadinova M, Radauer C, Hafner C, Szepfalusi Z, Varga EM, et al. IgE cross-reactivity between the major peanut allergen Ara h 2 and the nonhomologous allergens Ara h 1 and Ara h 3. J Allergy Clin Immunol. 2013 Jul;132(1):118–U212. This represents a new paradigm in the cross-reactivity of peanut allergens. It will be interesting to see if this generalizes to other allergen groups besides nuts and legumes.

  39. Maleki SJ, Teuber SS, Cheng H, Chen D, Comstock SS, Ruan S, et al. Computationally predicted IgE epitopes of walnut allergens contribute to cross-reactivity with peanuts. Allergy. 2011;66(12):1522–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Schein CH, Ivanciuc O, Braun W. Common physical-chemical properties correlate with similar structure of the IgE epitopes of peanut allergens. J Agric Food Chem. 2005;53(22):8752–9.

    Article  CAS  PubMed  Google Scholar 

  41. Astier C, Morisset M, Roitel O, Codreanu F, Jacquenet S, Franck P, et al. Predictive value of skin prick tests using recombinant allergens for diagnosis of peanut allergy. J Allergy Clin Immunol. 2006;118(1):250–6.

    Article  CAS  PubMed  Google Scholar 

  42. Flinterman AE, Knol EF, Lencer DA, Bardina L, Jager CFDH, Lin J, et al. Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. J Allergy Clin Immunol. 2008;121(3):737–43.

    Article  CAS  PubMed  Google Scholar 

  43. Peeters KABM, Koppelman SJ, van Hoffen E, van der Tas CWH, Jager CFD, Penninks AH, et al. Does skin prick test reactivity to purified allergens correlate with clinical severity of peanut allergy? Clin Exp Allergy. 2007;37(1):108–15.

    Article  CAS  PubMed  Google Scholar 

  44. Altmann F. The role of protein glycosylation in allergy. Int Arch Allergy Immunol. 2007;142(2):99–115.

    Article  CAS  PubMed  Google Scholar 

  45. Aalberse RC, Koshte V, Clemens JGJ. Immunoglobulin-E antibodies that crossreact with vegetable foods, pollen, and hymenoptera venom. J Allergy Clin Immunol. 1981;68(5):356–64.

    Article  CAS  PubMed  Google Scholar 

  46. Malandain H. IgE-reactive carbohydrate epitopes–classification, cross-reactivity, and clinical impact. Eur Ann Allergy Clin Immunol. 2005;37(4):122–8.

    CAS  PubMed  Google Scholar 

  47. van Ree R, Cabanes-Macheteau M, Akkerdaas J, Milazzo JP, Loutelier-Bourhis C, Rayon C, et al. beta(1,2)-xylose and alpha(1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem. 2000;275(15):11451–8.

    Article  PubMed  Google Scholar 

  48. van der Veen MJ, van Ree R, Aalberse RC, Akkerdaas J, Koopelman SJ, Jansen HM, et al. Poor biologic activity of cross-reactive IgE directed to carbohydrate determinants of glycoproteins. J Allergy Clin Immunol. 1997;100(3):327–34.

    Article  PubMed  Google Scholar 

  49. Kochuyt AM, Van Hoeyveld EM, Stevens EAM. Prevalence and clinical relevance of specific immunoglobulin E to pollen caused by sting-induced specific immunoglobulin E to cross-reacting carbohydrate determinants in Hymenoptera venoms. Clin Exp Allergy. 2005;35(4):441–7.

    Article  CAS  PubMed  Google Scholar 

  50. Dell A, Haslam SM, Morris HR, Khoo KH. Immunogenic glycoconjugates implicated in parasitic nematode diseases. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1999;1455(2–3):353–62.

    Article  CAS  Google Scholar 

  51. van Die I, Gomord V, Kooyman FNJ, van den Berg TK, Cummings RD, Vervelde L. Core alpha 1 -> 3-fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonchus contortus infected sheep. FEBS Lett. 1999;463(1–2):189–93.

    PubMed  Google Scholar 

  52. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, Yoo S, et al. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol. 2006;177(6):3677–85.

    Article  CAS  PubMed  Google Scholar 

  53. Royer PJ, Emara M, Yang CX, Al-Ghouleh A, Tighe P, Jones N, et al. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol. 2010;185(3):1522–31.

    Article  CAS  PubMed  Google Scholar 

  54. Wills-Karp M. Allergen-specific pattern recognition receptor pathways. Curr Opin Immunol. 2010;22(6):777–82.

    Article  CAS  PubMed  Google Scholar 

  55. Hodge JE. The Amadori rearrangement. Adv Carbohydr Chem. 1955;10:169–205.

    CAS  PubMed  Google Scholar 

  56. Rabbani N, Thornalley PJ. Glycation research in amino acids: a place to call home. Amino Acids. 2012;42(4):1087–96.

    Article  CAS  PubMed  Google Scholar 

  57. Uribarri J, Woodruff S, Goodman S, Cai WJ, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Chung SY, Champagne ET. Association of end-product adducts with increased IgE binding of roasted peanuts. J Agric Food Chem. 2001;49(8):3911–6.

    Article  CAS  PubMed  Google Scholar 

  59. Mueller GA, Maleki SJ, Johnson K, Hurlburt BK, Cheng H, Ruan S, et al. Indentification of Maillard reaction products on panut allergens that influence binding to the receptor for advanced glycation end products. Allergy. 2013.

  60. Chassaigne H, Norgaard JV, van Hengel AJ. Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J Agric Food Chem. 2007;55(11):4461–73.

    Article  CAS  PubMed  Google Scholar 

  61. Hebling CM, McFarland MA, Callahan JH, Ross MM. Global Proteomic Screening of Protein Allergens and Advanced Glycation Endproducts in Thermally Processed Peanuts. J Agric Food Chem. 2012 Oct 16.

  62. Petersen A, Rennert S, Kull S, Becker WM, Notbohm H, Goldmann T, et al. Roasting and lipid binding provide allergenic and proteolytic stability to the peanut Allergen Ara H 8. Biol Chem. 2013 Sep 21.

  63. Schmitt DA, Nesbit JB, Hurlburt BK, Cheng HP, Maleki SJ. Processing can alter the properties of peanut extract preparations. J Agric Food Chem. 2010;58(2):1138–43.

    Article  CAS  PubMed  Google Scholar 

  64. Ilchmann A, Burgdorf S, Scheurer S, Waibler Z, Nagai R, Wellner A, et al. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II. J Allergy Clin Immunol. 2010;125(1):175 e1-11–83 e1-11.

    Article  Google Scholar 

  65. Buttari B, Profumo E, Capozzi A, Facchiano F, Saso L, Sorice M, et al. Advanced glycation end products of human beta(2) glycoprotein I modulate the maturation and function of DCs. Blood. 2011;117(23):6152–61.

    Article  CAS  PubMed  Google Scholar 

  66. Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, et al. Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology. 2010;129(3):437–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zill H, Gunther R, Erbersdobler HF, Folsch UR, Faist V. RAGE expression and AGE-induced MAP kinase activation in Caco-2 cells. Biochem Biophys Res Commun. 2001;288(5):1108–11.

    Article  CAS  PubMed  Google Scholar 

  68. Teodorowicz M, Fiedorowicz E, Kostyra H, Wichers H, Kostyra E. Effect of Maillard reaction on biochemical properties of peanut 7S globulin (Ara h 1) and its interaction with a human colon cancer cell line (Caco-2). Eur J Nutr. 2013 Jan 20.

  69. Milutinovic PS, Alcorn JF, Englert JM, Crum LT, Oury TD. The receptor for advanced glycation end products is a central mediator of asthma pathogenesis. Am J Pathol. 2012;181(4):1215–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sukkar MB, Wood LG, Tooze M, Simpson JL, McDonald VM, Gibson PG, et al. Soluble RAGE is deficient in neutrophilic asthma and COPD. Eur Respir J. 2012;39(3):721–9.

    Article  CAS  PubMed  Google Scholar 

  71. Cheng CM, Tsuneyama K, Kominami R, Shinohara H, Sakurai S, Yonekura H, et al. Expression profiling of endogenous secretory receptor for advanced glycation end products in human organs. Mod Pathol. 2005;18(10):1385–96.

    Article  CAS  PubMed  Google Scholar 

  72. Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflamm. 2013;2013:403460.

    Article  Google Scholar 

  73. Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang HJ, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 2008;22(5):1572–80.

    Article  CAS  PubMed  Google Scholar 

  74. Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Letourneur F, et al. Intact skin and not stripped skin is crucial for the safety and efficacy of peanut epicutaneous immunotherapy (EPIT) in mice. Clin Transl Allergy. 2012;2(1):22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Beyer KB, Morrow E, Li XM, Bardina L, Bannon GA, Burks AW, et al. Effects of cooking methods on peanut allergenicity. J Allergy Clin Immunol. 2001;107(6):1077–81.

    Article  CAS  PubMed  Google Scholar 

  76. Maleki SJ, Casillas AM, Kaza U, Wilson BA, Nesbit JB, Reimoneqnue C, et al. Differences among heat-treated, raw, and commercial peanut extracts by skin testing and immunoblotting. Ann Allergy Asthma Immunol. 2010;105(6):451–7.

    Article  CAS  PubMed  Google Scholar 

  77. Pomes A, Butts CL, Chapman MD. Quantification of Ara h 1 in peanuts: why roasting makes a difference. Clin Exp Allergy. 2006;36(6):824–30.

    Article  CAS  PubMed  Google Scholar 

  78. Mondoulet L, Paty E, Drumare MF, Ah-Leung S, Scheinmann P, Willemot RM, et al. Influence of thermal processing on the allergenicity of peanut proteins. J Agric Food Chem. 2005;53(11):4547–53.

    Article  CAS  PubMed  Google Scholar 

  79. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol. 2007;62(4):427–33.

    Article  Google Scholar 

  80. Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr. 2013;67(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  81. Nesbit JB, Hurlburt BK, Schein CH, Cheng HP, Wei H, Maleki SJ. Ara h 1 structure is retained after roasting and is important for enhanced binding to IgE. Mol Nutr Food Res. 2012;56(11):1739–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. Robert London, Michael Fessler, and Jason Williams for critical readings of the manuscript. This research was supported by Research Project Number Z01- ES102885-01 and ZIA- ES102645 in the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health.

Compliance with Ethics Guidelines

Conflict of Interest

Geoffrey A. Mueller, Soheila J. Maleki, and Lars C. Pedersen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Mueller.

Additional information

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, G.A., Maleki, S.J. & Pedersen, L.C. The Molecular Basis of Peanut Allergy. Curr Allergy Asthma Rep 14, 429 (2014). https://doi.org/10.1007/s11882-014-0429-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0429-5

Keywords

Navigation