Skip to main content

Advertisement

Log in

Electrostatic dust collector: a passive screening method to assess occupational exposure to organic dust in primary health care centers

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Passive methods, such as electrostatic dust collectors (EDCs), allow determination of contamination levels for a long period of time, while air samples can only reproduce the load for a shorter period of time. We intended to analyze the suitability of EDC for identifying critical workstations of occupational exposure to particulate matter and for characterizing the bioburden present in ten primary health care centers (PHCC). Dust was allowed to settle for 15 days on EDCs (N = 81). Particle counts and size distribution (0.3, 0.5, 1, 2.5, 5, and 10 μm) were measured with direct-reading equipment. The results were considered significant at a 5% significance level. Significant correlations were detected between EDC weight (g) and particle counts of inhalation fraction (r = 0.235, p = 0.035), mass (μg m−3) of inhalation fraction (r = 0.235, p = 0.035), and total particulate matter (TPM) (mg m−3; r = 0.238, p = 0.033). Fungal contamination levels on malt extract agar (MEA) ranged from 0 to 53,397.03 CFU m−2. Chrysonilia sitophila (96.75%) was the most frequent fungus. The total bacterial contamination ranged from 0 to 4670.91 CFU m−2, and gram-negative bacteria ranged from 0 to 530.79 CFU m−2. EDC can be applied as a screening method for particle-exposure assessment and as a complementary sampling method for assessing bioburden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Conference of Governmental Industrial Hygienists (ACGIH) (2009) Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH, USA, ACGIH

    Google Scholar 

  • American Industrial Hygiene Association (1996) Field guide for the determination of biological contaminants in environmental samples, 2nd ed., Portugal

  • American Thoracic Society (1998) Respiratory health hazards in agriculture. Am J Respir Crit Care Med 158:1–57

    Article  Google Scholar 

  • Anderson RE, Young V, Stewart M, Robertson C, Dancer SJ (2011) Cleanliness audit of clinical surfaces and equipment: who cleans what? J Hosp Infect 78(3):178–181

    Article  CAS  Google Scholar 

  • Awad AHA (2007) Airborne dust, bacteria, actinomycetes and fungi at a flourmill. Aerobiologia 23:59–69

    Article  Google Scholar 

  • Baurès E, Blanchard O, Mercier F, Surget E, Le Cann P, Rivier A, Gangneux JP, Florentin A (2018) Indoor air quality in two French hospitals: measurement of chemical and microbiological contaminants. Science of the Total Environment 642:168–179

    Article  CAS  Google Scholar 

  • Brągoszewska E, Biedroń I, Kozielska B, Pastuszka JS (2018) Microbiological indoor air quality in an office building in Gliwice, Poland: analysis of the case study. Air Quality, Atmosphere & Health 11:729–740

    Article  CAS  Google Scholar 

  • Brown J, Gordon T, Price O, Asgharian B (2013) Thoracic and respirable particle definitions for human health risk assessment. Particle and Fibre Toxicology 10:12

    Article  Google Scholar 

  • Cabo Verde S, Almeida SM, Matos J, Guerreiro D, Meneses M, Faria T, Botelho D, Santos M, Viegas C (2015) Microbiological assessment of indoor air quality at different hospital sites. Res Microbiol 166(7):557–556

    Article  Google Scholar 

  • Cauda EG, Ku BK, Miller AL, Barone TL (2012) Toward developing a new occupational exposure metric approach for characterization of diesel aerosols. Aerosol Sci Technol 46(12):1370–1381

    Article  CAS  Google Scholar 

  • Cozen W, Avol E, Diaz-Sanchez D, McConnell R, Gauderman WJ, Cockburn MG, Mack TM (2008) Use of an electrostatic dust cloth for self-administered home allergen collection. Twin Res Hum Genet 11:150–155

    Article  Google Scholar 

  • Cruz-Perez P, Buttner MP, Stetzenbach LD (2001) Detection and quantitation of Aspergillus fumigatus in pure culture using polymerase chain reaction. Mol Cell Probe 15:81–88. https://doi.org/10.1006/mcpr.2000.0343

    Article  CAS  Google Scholar 

  • Dancer SJ (2008) Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis 8:101–113

    Article  Google Scholar 

  • Degois J, Clerc F, Simon X, Bontemps C, Leblond P, Duquenne P (2017) First metagenomic survey of the microbial diversity in bioaerosols emitted in waste sorting plants. Ann Work Expo Health: 1–11. https://doi.org/10.1093/annweh/wxx075

  • Dehnavieh R, Mirshekari N, Ghasemi S, Goudarzi R, Haghdoost A, Mehrolhassani MH, Moshkani Z, Hekmat SN (2016) Health technology assessment: off-site sterilization. Med J Islam Repub Iran 30:345

    Google Scholar 

  • Dorado-Garcia A, Bos ME, Graveland H, Van Cleef BA, Verstappen KM, Kluytmans JA, Wagenaar JA, Heederik DJ (2013) Risk factors for persistence of livestock-associated MRSA and environmental 506 exposure in veal calf farmers and their family members: an observational longitudinal study. BMJ Open 3:e003272

    Article  Google Scholar 

  • Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187–200

    CAS  Google Scholar 

  • Ekhaise FO, Isitor EE, Idehen O, Emoghene AO (2010) Airborne microflora in the atmosphere of an hospital environment of University of Benin Teaching Hospital (UBTH), Benin City, Nigeria. World J Agricult Sci 6(2):166–170

    Google Scholar 

  • EPA, United States Environmental Protection Agency. (2017) About the National Exposure Research Laboratory (NERL). Available from: URL: http://www.epa.gov/nerlcwww/moldtech.htm (accessed 19 June 2017)

  • Feld L, Bay H, Angen Ø, Larsen AR, Madsen AM (2018) Survival of LA-MRSA in dust from swine farms. Annals of Work Exposures and Health 62(2):147–156

    Article  CAS  Google Scholar 

  • Institute of Medicine (2004) Damp indoor spaces and health. The National Academies Press, Washington, DC, USA

    Google Scholar 

  • Jürgensen CW, Madsen AM (2016) Influence of everyday activities and presence of people in common indoor environments on exposure to airborne fungi. AIMS Environ Sci 3(1):77–95

    Article  Google Scholar 

  • Kilburg-Basnyat B, Metwali N, Thorne PS (2016) Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: effect of mailing, placement, heating and electrostatic charge. J Occup Environ Hyg 13:85–93

    Article  CAS  Google Scholar 

  • Laakkonen A, Kyyrönen P, Kauppinen T, Pukkala EI (2006) Occupational exposure to eight organic dusts and respiratory cancer among Finns. Occup Environ Med 63:726–733

    Article  CAS  Google Scholar 

  • Madsen AM, Matthiesen CB, Frederiksen MW, Frederiksen M, Frankel M, Spilak M, Timm M (2012) Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J Environ Monit 14:3230–3239

    Article  CAS  Google Scholar 

  • Mayer Z, Bagnara A, FaÅNrber P, Geisen R (2003) Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int J Food Microbiol 82:143–151. https://doi.org/10.1016/S0168-1605(02)00250-7

    Article  CAS  Google Scholar 

  • Normand AC, Vacheyrou M, Sudre B, Heederik DJJ, Piarroux R (2009) Assessment of dust sampling methods for the study of cultivable-microorganism exposure in stables. Appl Environ Microbiol 75(24):7617–7623. https://doi.org/10.1128/AEM.01414-09

    Article  CAS  Google Scholar 

  • Noss I, Wouters IM, Visser M, Heederik DJJ, Thorne PS, Brunekreef B, Doekes G (2008) Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment. Appl Environ Microbiol 74:5621–5627

    Article  CAS  Google Scholar 

  • Oliveira AC, Damasceno QS (2010) Surfaces of the hospital environment as possible deposits of resistant bacteria: a review. Revista da Escola de Enfermagem da USP 44(4):1118–1123. https://doi.org/10.1590/S0080-62342010000400038

    Article  Google Scholar 

  • Salama KF, Berekaa MM (2015) Assessment of air quality in Dammam slaughter houses, Saudi Arabia. International Journal of Medical Science and Public Health Online 5(2):287–291

    Article  Google Scholar 

  • Santos L, Santos J, Rebelo A, Vieira da Silva M (2013) Indoor air quality in community health centres: a preliminary study. Occupational Safety and Hygiene. Arezes et al. (eds): 443–447. ISBN: 978-1-138-00047-6. London: CRC Press. https://doi.org/10.1201/b14391-91

  • Scherer E, Rocchi S, Reboux G, Vandentorren S, Roussel S, Vacheyrou M, Raherison C, Millon L (2014) qPCR standard operating procedure for measuring microorganisms in dust from dwellings in large cohort studies. Sci Total Environ 466–467:716–724

    Article  CAS  Google Scholar 

  • Stobnicka A, Górny RL (2015) Exposure to flour dust in the occupational environment. Int J Occup Saf Ergon 21:241–249

    Article  Google Scholar 

  • Straumfors A, Olsen R, Daae HL, Afanou A, McLean D, Corbin M, Mannetje A, Ulvestad B, Bakke B, Johnsen HL, Douwes J, Eduard W (2018) Exposure to wood dust, microbial components, and terpenes in the Norwegian sawmill industry. Annals of Work Exposures and Health 62(6):674–688

    Article  Google Scholar 

  • Sudharsanam S, Swaminathan S, Ramalingam A, Thangavel G, Annamalai R, Steinberg R, Balakrishnan K, Srikanth P (2012) Characterization of indoor bioaerosols from a hospital ward in a tropical setting. Afr Health Sci 12(2):217–225

    Article  CAS  Google Scholar 

  • Tittarelli A, Borgini M, Bertoldi E, De Saeger A, Ruprecht R, Stefanoni G, Tagliabue P, Contiero P, Crosignani Ø (2008) Estimation of particle mass concentration in ambient air using a particle counter. Atmos Environ 42:8543–8548

    Article  CAS  Google Scholar 

  • Tsapko V, Chudnovets A, Sterenbogen J, Papach V, Dutkiewicz J, Skórska C, Krysinska T, Golec M (2011) Exposure to bioaerosols in the selected agricultural facilities of the Ukraine and Poland—a review. Ann Agric Environ Med 18:19–27

    CAS  Google Scholar 

  • Varga J, Baranyi N, Chandrasekaran M, Vágvölgyi C, Kocsubé S (2015) Mycotoxin producers in the Aspergillus genus: an update. Acta Biol Szeged 59:151–167

    Google Scholar 

  • Viegas C, Carolino E, Sabino R, Viegas S, Veríssimo C (2013a) Fungal contamination in swine: a potential occupational health threat. J Toxic Environ Health A 76(4–5):272–280. https://doi.org/10.1080/15287394.2013.757205

    Article  CAS  Google Scholar 

  • Viegas C, Coggins AM, Faria T, Aranha Caetano L, Quintal Gomes A, Sabino R, Verissimo C, Roberts N, Watterson D, MacGilchrist C, Fleming GTA (2018a) Fungal burden exposure assessment in podiatry clinics. Int J Environ Health Res 28(2):167–177. https://doi.org/10.1080/09603123.2018.1453053

    Article  CAS  Google Scholar 

  • Viegas C, Faria T, Carolino E, Sabino R, Quintal Gomes A, Viegas S (2016) Occupational exposure to fungi and particles in animal feed industry. Med Pr 67:143–154

    Article  Google Scholar 

  • Viegas C, Faria T, Cebola de Oliveira A, Aranha Caetano L, Carolino E, Quintal-Gomes A, Twarużek M, Kosicki R, Soszczyńska E, Viegas S (2017) A new approach to assess fungal contamination and mycotoxins occupational exposure in forklifts drivers from waste sorting. Mycotoxin Research 33(4):285–295. https://doi.org/10.1007/s12550-017-0288-8

    Article  CAS  Google Scholar 

  • Viegas C, Monteiro A, Aranha Caetano L, Faria T, Carolino E, Viegas S (2018b) Electrostatic dust cloth: a passive screening method to assess occupational exposure to organic dust in bakeries. Atmosphere 9:64. https://doi.org/10.3390/atmos9020064

    Article  CAS  Google Scholar 

  • Viegas S, Faísca VM, Dias HB, Clérigo A, Carolino E, Viegas C (2013b) Occupational exposure to poultry dust and effects on the respiratory system in workers. J Toxicol Environ Health A 76(4–5):230–239

    Article  CAS  Google Scholar 

  • Viegas S, Veiga L, Figueiredo P, Almeida A, Carolino E, Sabino R, Veríssimo C, Viegas C (2013c) Occupational exposure to aflatoxin B1 in swine production and possible contamination sources. Journal of Toxicology and Environment Health, Part A 76(15):944–951. https://doi.org/10.1080/15287394.2013.826569

    Article  CAS  Google Scholar 

  • Vissers M, Doekes G, Heederik D (2001) Exposure to wheat allergen and fungal α-amylase in the homes of bakers. Clin Exp Allergy 31:1577–1582

    Article  CAS  Google Scholar 

  • Wilson WE, Suh HH (1997) Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. Journal of Air and Waste Management Association 47:1238–1249

    Article  CAS  Google Scholar 

  • Wittig AE, Anderson N, Khlystov AY, Pandis SN, Davidson C, Robinson AL (2004) Pittsburgh air quality study overview. Atmos Environ 38:3107–3125

    Article  CAS  Google Scholar 

  • Yamamoto N, Detlef S, Bean T, Chen B, Lindsley W, Peccia J (2011) Comparison of quantitative airborne fungi measurements by active and passive sampling methods. J Aerosol Sci 42(8):499–507

    Article  CAS  Google Scholar 

  • Zahar JR, Jolivet S, Adam H, Dananché C, Lizon J, Alfandari S, Boulestreau H, Baghdadi N, Bay JO, Bénéteau AM, Bougnoux ME, Brenier-Pinchart MP et al (2017) French recommendations on control measures to reduce the infectious risk in immunocompromised patients. J Mycol Med 27(4):449–456

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FCT—Fundação para Ciência e Tecnologia for funding the project EXPOsE—for establishing protocols to assess occupational exposure to microbiota in clinical settings (02/SAICT/2016—Project No. 23222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Viegas.

Ethics declarations

Conflict of interest

None.

I have full control of all primary data and permission is given to the journal to review the data if requested.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viegas, C., Santos, P., Almeida, B. et al. Electrostatic dust collector: a passive screening method to assess occupational exposure to organic dust in primary health care centers. Air Qual Atmos Health 12, 573–583 (2019). https://doi.org/10.1007/s11869-018-0650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-018-0650-9

Keywords

Navigation