Skip to main content

Advertisement

Log in

Utility of Measurable Residual Disease (MRD) Assessment in Mantle Cell Lymphoma

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Mantle cell lymphoma (MCL) treatment advances have significantly improved disease-free remission, with greater focus in clinical trials being placed on measurable residual disease (MRD) as a marker of subclinical disease assessment. While this concept is used extensively in other haematological neoplasms, there is yet to be a consensus on the threshold for MRD in MCL that demonstrates prognostic and therapeutic significance, and in this context has yet to reach routine clinical practice. The historical long-term method for MCL MRD assessment has been real-time quantitative polymerase chain reaction (PCR), targeting the clonal immunoglobulin heavy locus (IGH) rearrangement or the IGH::CCND1 translocation rearrangement. A significant problem at present relates to identifying alternative assays for patients who do not have a suitable molecular target by this method. This article reviews existing techniques used in MRD assessment for MCL and describes novel methods which may overcome existing limitations, including next-generation sequencing modalities. The use of circulating tumour DNA is explored, with techniques such as CAPP-Seq and PhasED-Seq demonstrating promise in B-lymphoproliferative disorders, though application in MCL requires further study. The other aspect of practice using MRD is identifying therapeutic options which can address a subclinical molecular relapse. Developing suitable interventions that can alter the disease trajectory based on longitudinal MRD kinetics are needed to justify its incorporation into standard care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Weisenburger DD, Kim H, Rappaport H. Mantle-zone lymphoma: a follicular variant of intermediate lymphocytic lymphoma. Cancer. 1982;49(7):1429–38.

    Article  CAS  PubMed  Google Scholar 

  2. Raffeld M, Jaffe ES. bcl-1, t(ll;14), and mantle cell-derived lymphomas. Blood. 1991;78(2):259–63.

    Article  CAS  PubMed  Google Scholar 

  3. Rimokh R, Berger F, Delsol G, Digonnet I, Rouault JP, Tigaud JD, et al. Detection of the chromosomal translocation t(11;14) by polymerase chain reaction in mantle cell lymphomas. Blood. 1994;83(7):1871–5.

    Article  CAS  PubMed  Google Scholar 

  4. Leroux D, Marc’hadour FL, Gressin R, Jacob M-C, Keddari E, Monteil M, et al. Non-Hodgkin’s lymphomas with t(11;14)(q13;q32): a subset of mantle zone/intermediate lymphocytic lymphoma? Br J Haematol.. 1991;77(3):346–53.

    Article  CAS  PubMed  Google Scholar 

  5. Williams ME, Meeker TC, Swerdlow SH. Rearrangement of the chromosome 11 bcl-1 locus in centrocytic lymphoma: analysis with multiple breakpoint probes. Blood. 1991;78(2):493–8.

    Article  CAS  PubMed  Google Scholar 

  6. Siebert R, Matthiesen P, Harder S, Zhang Y, Borowski A, Zühlke-Jenisch R, et al. Application of interphase cytogenetics for the detection of t(11;14)(q13;q32) in mantle cell lymphomas. Ann Oncol. 1998;9(5):519–26.

    Article  CAS  PubMed  Google Scholar 

  7. Jain P, Wang ML. Mantle cell lymphoma in 2022—a comprehensive update on molecular pathogenesis, risk stratification, clinical approach, and current and novel treatments. Am J Hematol. 2022;97(5):638–56.

    Article  CAS  PubMed  Google Scholar 

  8. Armitage JO, Longo DL. Mantle-cell lymphoma. N Engl J Med. 2022;386(26):2495–506.

    Article  CAS  PubMed  Google Scholar 

  9. Gerson JN, Handorf E, Villa D, Gerrie AS, Chapani P, Li S, et al. Survival outcomes of younger patients with mantle cell lymphoma treated in the rituximab era. J Clin Oncol. 2019;37(6):471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang KK, Lucas E, Lesher B, Caver T, Tang B. A systematic review of the epidemiology and economic burden of mantle cell lymphoma (MCL). Blood. 2019;134:5831.

    Article  Google Scholar 

  11. Albertsson-Lindblad A, Palsdottir T, Smedby KE, Weibull CE, Glimelius I, Jerkeman M. Survival in mantle cell lymphoma after frontline treatment with R-bendamustine, R-CHOP and the Nordic MCL2 regimen – a real world study on patients diagnosed in Sweden 2007-2017. Haematologica. 2021;107(3):740–3.

    Article  PubMed Central  Google Scholar 

  12. Geisler CH, Kolstad A, Laurell A, Andersen NS, Pedersen LB, Jerkeman M, et al. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo–purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood. 2008;112(7):2687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eskelund CW, Kolstad A, Jerkeman M, Räty R, Laurell A, Eloranta S, et al. 15-year follow-up of the Second Nordic Mantle Cell Lymphoma trial (MCL2): prolonged remissions without survival plateau. Br J Haematol. 2016;175(3):410–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lew TE, Minson A, Dickinson M, Handunnetti SM, Blombery P, Khot A, et al. Treatment approaches for patients with TP53-mutated mantle cell lymphoma. Lancet Haematol. 2023;10(2):e142–e54.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar A, Eyre TA, Lewis KL, Thompson MC, Cheah CY. New directions for mantle cell lymphoma in 2022. Am Soc Clin Oncol Educ Book. 2022;42:614–28.

    Article  Google Scholar 

  16. Cheminant M, Derrieux C, Touzart A, Schmit S, Grenier A, Trinquand A, et al. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica. 2016;101(3):336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chovancová J, Bernard T, Stehlíková O, Šálek D, Janíková A, Mayer J, et al. Detection of minimal residual disease in mantle cell lymphoma—establishment of novel eight-color flow cytometry approach. Cytometry B Clin Cytom. 2015;88(2):92–100.

    Article  PubMed  Google Scholar 

  18. Minson A, Hamad N, Cheah CY, Tam CS, Blombery P, Westerman DA, et al. Time-limited ibrutinib and tisagenlecleucel is highly effective in the treatment of patients with relapsed or refractory mantle cell lymphoma, including those with TP53 mutated and Btki-refractory disease: first report of the Tarmac study. Blood. 2022;140:181–3.

    Article  Google Scholar 

  19. Smith M, Jegede O, Parekh S, Hanson CA, Martin P, Till BG, et al. Minimal residual disease (MRD) assessment in the ECOG1411 randomized phase 2 trial of front-line bendamustine-rituximab (BR)-based induction followed by rituximab (R) ± lenalidomide (L) consolidation for mantle cell lymphoma (MCL). Blood. 2019;134:751.

    Article  Google Scholar 

  20. Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, et al. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378(13):1211–23.

  21. Wang ML, Jurczak W, Jerkeman M, Trotman J, Zinzani PL, Belada D, et al. Ibrutinib plus bendamustine and rituximab in untreated mantle-cell lymphoma. N Engl J Med. 2022;386(26):2482–94.

    Article  CAS  PubMed  Google Scholar 

  22. Ferrero S, Grimaldi D, Genuardi E, Drandi D, Zaccaria GM, Alessandria B, et al. Punctual and kinetic MRD analysis from the Fondazione Italiana Linfomi MCL0208 phase 3 trial in mantle cell lymphoma. Blood. 2022;140(12):1378–89. Update of measurable residual disease and impact of lenalidomide maintenance therapy in mantle cell lymphoma

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoster E, Delfau M-H, Macintyre EA, Jiang L, Stilgenbauer S, Vehling-Kaiser U, et al. Predictive value of minimal residual disease on efficacy of rituximab maintenance in mantle cell lymphoma: results from the European MCL Elderly Trial. Blood. 2022;140(Supplement 1):1304–6.

    Article  Google Scholar 

  24. Pott C, Schrader C, Gesk S, Harder L, Tiemann M, Raff T, et al. Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood. 2006;107(6):2271–8.

    Article  CAS  PubMed  Google Scholar 

  25. Pott C, Hoster E, Delfau-Larue M-H, Beldjord K, Böttcher S, Asnafi V, et al. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010;115(16):3215–23.

    Article  CAS  PubMed  Google Scholar 

  26. Pott C, Macintyre E, Delfau M-H, Weiß A, Schilhabel A, Soehlbrand A, et al. Prediction of relapse by standardized IG-based allel-specific QPCR, DDPCR and amplicon NGS for MRD monitoring in mantle cell lymphoma: a comparative analysis by the EU-MCL network. Hematol Oncol. 2021;39:S2.

    Article  Google Scholar 

  27. Callanan MB, Macintyre E, Delfau-Larue M-H, Thieblemont C, Oberic L, Gyan E, et al. Predictive power of early, sequential MRD monitoring in peripheral blood and bone marrow in patients with mantle cell lymphoma following autologous stem cell transplantation with or without rituximab maintenance; final results from the LyMa-MRD Project, conducted on behalf of the Lysa Group. Blood. 2020;136:12–3.

    Article  Google Scholar 

  28. Ladetto M, Brüggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28(6):1299–307.

    Article  CAS  PubMed  Google Scholar 

  29. Drandi D, Alcantara M, Benmaad I, Söhlbrandt A, Lhermitte L, Zaccaria G, et al. Droplet digital PCR quantification of mantle cell lymphoma follow-up samples from four prospective trials of the European MCL Network. HemaSphere. 2020;4(2):e347.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Le Gouill S, Beldi-Ferchiou A, Alcantara M, Cacheux V, Safar V, Burroni B, et al. Molecular response after obinutuzumab plus high-dose cytarabine induction for transplant-eligible patients with untreated mantle cell lymphoma (LyMa-101): a phase 2 trial of the LYSA group. Lancet Haematol. 2020;7(11):e798–807.

    Article  PubMed  Google Scholar 

  31. Caldwell IR, Ingbritsen M, Yap YZ, Dowling MR, Tiong IS, Westerman DA, et al. Utility of high-throughput sequencing of immunoglobulin genes for MRD in lymphoid malignancy in the context of current immunotherapeutics. Blood. 2022;140:10731–2.

    Article  Google Scholar 

  32. Epstein-Peterson ZD, Batlevi CL, Caron P, Dogan A, Drullinsky P, Gerecitano J, et al. Frontline sequential immunochemotherapy plus lenalidomide for mantle cell lymphoma incorporating MRD evaluation: phase II, investigator-initiated, single-center study. Blood. 2020;136:11–2.

    Article  Google Scholar 

  33. Furqan F, Fenske TS, Longo WL, Johnson B, Hamadani M, Shah NN. MRD status by Clonoseq ® is a poor predictor of long-term outcomes after bispecific LV20.19 CAR T-cell therapy for relapsed, refractory B-cell NHL. Blood. 2022;140:6407–8.

    Article  Google Scholar 

  34. Genuardi E, Romano G, Beccuti M, Alessandria B, Mannina D, Califano C, et al. Application of the Euro clonality next-generation sequencing-based marker screening approach to detect immunoglobulin heavy chain rearrangements in mantle cell lymphoma patients: first data from the Fondazione Italiana Linfomi MCL0208 trial. Br J Haematol. 2021;194(2):378–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khouja M, Genuardi E, Ferrero S, Alessandria B, Verhagen O, Homburg C, et al. Genotyping and minimal residual disease (MRD) assessment in cfDNA by the euroclonality-NGS DNA capture (EC-NDC) panel in mantle cell lymphoma (MCL). Blood. 2022;140(Supplement 1):3518–20.

    Article  Google Scholar 

  36. Lakhotia R, Melani C, Dunleavy K, Pittaluga S, Saba N, Lindenberg L, et al. Circulating tumor DNA predicts therapeutic outcome in mantle cell lymphoma. Blood Adv. 2022;6(8):2667–80. Use of circulating tumour DNA in mantle cell lymphoma

  37. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nature Med. 2014;20(5):548–54.

    Article  CAS  PubMed  Google Scholar 

  39. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nature Biotech. 2016;34(5):547–55.

    Article  CAS  Google Scholar 

  40. Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nature Protoc. 2014;9(11):2586–606.

    Article  CAS  Google Scholar 

  41. Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nature Biotech. 2021;39(12):1537–47. Describes PhasED-Seq and utility in circulating tumour DNA

    Article  CAS  Google Scholar 

  42. Ladetto M, Tavarozzi R, Pott C. Minimal residual disease (MRD) in mantle cell lymphoma. Annals of Lymphoma. 2020;2020:4.

    Article  Google Scholar 

  43. Lauer EM, Mutter J, Scherer F. Circulating tumor DNA in B-cell lymphoma: technical advances, clinical applications, and perspectives for translational research. Leukemia. 2022;36(9):2151–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoster E, Pott C. Minimal residual disease in mantle cell lymphoma: insights into biology and impact on treatment. Hematology. 2016;2016(1):437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jung D, Jain P, Yao Y, Wang M. Advances in the assessment of minimal residual disease in mantle cell lymphoma. J Hematol Oncol. 2020;13(1):127.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Böttcher S, Ritgen M, Buske S, Gesk S, Klapper W, Hoster E, et al. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica. 2008;93(4):551–9.

    Article  PubMed  Google Scholar 

  47. Bayly E, Nguyen V, Binek A, Piggin A, Baldwin K, Westerman D, et al. Validation of a modified pre-lysis sample preparation technique for flow cytometric minimal residual disease assessment in multiple myeloma, chronic lymphocytic leukemia, and B-non Hodgkin lymphoma. Cytometry B Clin Cytom. 2020;98(5):385–98.

    Article  CAS  PubMed  Google Scholar 

  48. Böttcher S. Flow cytometric MRD detection in selected mature B-cell malignancies. Methods Mol Biol. 2019;1956:157–97.

    Article  PubMed  Google Scholar 

  49. Mikhailova E, Itov A, Zerkalenkova E, Roumiantseva J, Olshanskaya Y, Karachunskiy A, et al. B-lineage antigens that are useful to substitute CD19 for minimal residual disease monitoring in B cell precursor acute lymphoblastic leukemia after CD19 targeting. Cytometry B Clin Cytom. 2022;102(5):353–9.

    Article  CAS  PubMed  Google Scholar 

  50. Chen X, Gao Q, Roshal M, Cherian S. Flow cytometric assessment for minimal/measurable residual disease in B lymphoblastic leukemia/lymphoma in the era of immunotherapy. Cytometry B Clin Cytom. 2023;2023:1. https://doi.org/10.1002/cyto.b.22113.

    Article  CAS  Google Scholar 

  51. Hummel M, Tamaru J-i, Kalvelage B, Stein H. Mantle cell (previously centrocytic) lymphomas express VH genes with no or very little somatic mutations like the physiologic cells of the follicle mantle. Blood. 1994;84(2):403–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kurokawa T, Kinoshita T, Murate T, Nagasaka T, Kagami Y, Ogura M, et al. Complementarity determining region-III is a useful molecular marker for the evaluation of minimal residual disease in mantle cell lymphoma. Br J Haematol. 1997;98(2):408–12.

    Article  CAS  PubMed  Google Scholar 

  53. Della Starza I, Cavalli M, De Novi LA, Genuardi E, Mantoan B, Drandi D, et al. Minimal residual disease (MRD) in non-Hodgkin lymphomas: interlaboratory reproducibility on marrow samples with very low levels of disease within the FIL (Fondazione Italiana Linfomi) MRD Network. Hematol Oncol. 2019;37(4):368–74.

    Article  CAS  PubMed  Google Scholar 

  54. Howard OM, Gribben JG, Neuberg DS, Grossbard M, Poor C, Janicek MJ, et al. Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival. J Clin Oncol. 2002;20(5):1288–94.

    Article  CAS  PubMed  Google Scholar 

  55. Pott C, Tiemann M, Linke B, Ott MM, von Hofen M, Bolz I, et al. Structure of Bcl-1 and IgH-CDR3 rearrangements as clonal markers in mantle cell lymphomas. Leukemia. 1998;12(10):1630–7.

    Article  CAS  PubMed  Google Scholar 

  56. van der Velden VHJ, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21(4):604–11.

    Article  PubMed  Google Scholar 

  57. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771–82.

    Article  CAS  PubMed  Google Scholar 

  58. van Dongen JJM, van der Velden VHJ, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Szczepański T, Velden V, Raff T, DCH J, Wering E, Brüggemann M, et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia. 2003;17(11):2149–56.

    Article  PubMed  Google Scholar 

  60. Shirai R, Osumi T, Keino D, Nakabayashi K, Uchiyama T, Sekiguchi M, et al. Minimal residual disease detection by mutation-specific droplet digital PCR for leukemia/lymphoma. Int J Hematol. 2023;2023:1–9. https://doi.org/10.1007/s12185-023-03566-2.

    Article  CAS  Google Scholar 

  61. Drandi D, Kubiczkova-Besse L, Ferrero S, Dani N, Passera R, Mantoan B, et al. Minimal residual disease detection by droplet digital PCR in multiple myeloma, mantle cell lymphoma, and follicular lymphoma: a comparison with real-time PCR. The Journal of Molecular Diagnostics. 2015;17(6):652–60.

    Article  CAS  PubMed  Google Scholar 

  62. Brüggemann M, Kotrová M, Knecht H, Bartram J, Boudjogrha M, Bystry V, et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia. 2019;33(9):2241–53.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Faham M, Zheng J, Moorhead M, Carlton VEH, Stow P, Coustan-Smith E, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ching T, Duncan ME, Newman-Eerkes T, McWhorter MME, Tracy JM, Steen MS, et al. Analytical evaluation of the clonoSEQ Assay for establishing measurable (minimal) residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. BMC Cancer. 2020;20(1):612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lakhotia R, Roschewski M. Circulating tumour DNA in B-cell lymphomas: current state and future prospects. Br J Haematol. 2021;193(5):867–81.

    Article  CAS  PubMed  Google Scholar 

  66. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. Three-year follow-up of outcomes with KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 study. J Clin Oncol. 2023;41(3):555–67.

    Article  CAS  PubMed  Google Scholar 

  67. Genuardi E, Klous P, Mantoan B, Drandi D, Ferrante M, Cavallo F, et al. Targeted locus amplification to detect molecular markers in mantle cell and follicular lymphoma. Hematol Oncol. 2021;39(3):293–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Vree PJP, de Wit E, Yilmaz M, van de Heijning M, Klous P, Verstegen MJAM, et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol. 2014;32(10):1019–25.

    Article  PubMed  Google Scholar 

  69. Cirillo M, Craig AFM, Borchmann S, Kurtz DM. Liquid biopsy in lymphoma: molecular methods and clinical applications. Cancer Treat. Rev. 2020;2020:91.

    Google Scholar 

  70. Davide R, Valeria S, Alessio B, Gianluca G. Liquid biopsy in lymphoma. Haematologica. 2019;104(4):648–52.

    Article  Google Scholar 

  71. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.

    Article  CAS  PubMed  Google Scholar 

  72. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nature Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  73. Agarwal R, Chan Y-C, Tam CS, Hunter T, Vassiliadis D, Teh CE, et al. Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nature Med. 2019;25(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  74. Stewart CM, Michaud L, Whiting K, Nakajima R, Nichols C, De Frank S, et al. Phase I/Ib study of the efficacy and safety of buparlisib and ibrutinib therapy in MCL, FL, and DLBCL with serial cell-free DNA monitoring. Clin Cancer Res. 2022;28(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  75. Rossi D, Kurtz DM, Roschewski M, Cavalli F, Zucca E, Wilson WH. The development of liquid biopsy for research and clinical practice in lymphomas: report of the 15-ICML workshop on ctDNA. Hematol Oncol. 2020;38(1):34–7.

    Article  PubMed  Google Scholar 

  76. Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM, Esfahani MS, et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J Clin Oncol. 2018;36(28):2845–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kurtz DM, Scherer F, Newman AM, Craig AFM, Khodadoust MS, Lovejoy AF, et al. Prediction of therapeutic outcomes in DLBCL from circulating tumor DNA dynamics. J Clin Oncol. 2016;34(15):7511–1.

    Article  Google Scholar 

  78. Meriranta L, Alkodsi A, Pasanen A, Lepistö M, Mapar P, Blaker YN, et al. Molecular features encoded in the ctDNA reveal heterogeneity and predict outcome in high-risk aggressive B-cell lymphoma. Blood. 2022;139(12):1863–77.

    Article  CAS  PubMed  Google Scholar 

  79. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109(36):14508–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiang P, Chan CWM, Chan KCA, Cheng SH, Wong J, Wong VW-S, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A. 2015;112(11):E1317–E25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RSK, Küppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–6.

    Article  CAS  PubMed  Google Scholar 

  82. Zheng Z, Liebers M, Zhelyazkova B, Cao Y, Panditi D, Lynch KD, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nature Med. 2014;20(12):1479–84.

    Article  CAS  PubMed  Google Scholar 

  83. Mokánszki A, Bicskó R, Gergely L, Méhes G. Cell-free total nucleic acid-based genotyping of aggressive lymphoma: comprehensive analysis of gene fusions and nucleotide variants by next-generation sequencing. Cancers (Basel). 2021;13:12.

    Article  Google Scholar 

  84. Zhou Y, Chen H, Tao Y, Zhong Q, Shi Y. Minimal residual disease and survival outcomes in patients with mantle cell lymphoma: a systematic review and meta-analysis. J Cancer. 2021;12(2):553–61.

    Article  PubMed  PubMed Central  Google Scholar 

  85. van der Velden VHJ, Panzer-Grümayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia. 2007;21(4):706–13.

    Article  PubMed  Google Scholar 

  86. Ladetto M, Cortelazzo S, Ferrero S, Evangelista A, Mian M, Tavarozzi R, et al. Lenalidomide maintenance after autologous haematopoietic stem-cell transplantation in mantle cell lymphoma: results of a Fondazione Italiana Linfomi (FIL) multicentre, randomised, phase 3 trial. Lancet Haematol. 2021;8(1):e34–44.

    Article  CAS  PubMed  Google Scholar 

  87. Kolstad A, Pedersen LB, Eskelund CW, Husby S, Grønbæk K, Jerkeman M, et al. Molecular monitoring after autologous stem cell transplantation and preemptive rituximab treatment of molecular relapse; results from the Nordic mantle cell lymphoma studies (MCL2 and MCL3) with median follow-up of 8.5 years. Biol Blood Marrow Transplant. 2017;23(3):428–35.

    Article  CAS  PubMed  Google Scholar 

  88. Kolstad A, Laurell A, Jerkeman M, Grønbæk K, Elonen E, Räty R, et al. Nordic MCL3 study: 90Y-ibritumomab-tiuxetan added to BEAM/C in non-CR patients before transplant in mantle cell lymphoma. Blood. 2014;123(19):2953–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin-Nelemans HC, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111(2):558–65.

    Article  CAS  PubMed  Google Scholar 

  90. Hoster E, Klapper W, Hermine O, Kluin-Nelemans HC, Walewski J, Av H, et al. Confirmation of the Mantle-Cell Lymphoma International Prognostic Index in randomized trials of the European Mantle-Cell Lymphoma Network. J Clin Oncol. 2014;32(13):1338–46.

    Article  PubMed  Google Scholar 

  91. Hoster E, Rosenwald A, Berger F, Bernd H-W, Hartmann S, Loddenkemper C, et al. Prognostic value of Ki-67 index, cytology, and growth pattern in mantle-cell lymphoma: results from randomized trials of the European Mantle Cell Lymphoma Network. J Clin Oncol. 2016;34(12):1386–94.

    Article  CAS  PubMed  Google Scholar 

  92. Eskelund CW, Dahl C, Hansen JW, Westman M, Kolstad A, Pedersen LB, et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017;130(17):1903–10.

    Article  CAS  PubMed  Google Scholar 

  93. Smith MR, Jegede O, Martin P, Till BG, Parekh S, Yang DT, et al. Randomized phase 2 trial of first-line bendamustine-rituximab (BR)-based induction followed by rituximab (R) ± lenalidomide (L) consolidation for mantle cell lymphoma ECOG-ACRIN E1411. Blood. 2022;140(Supplement 1):186–8.

    Article  Google Scholar 

  94. Kluin-Nelemans HC, Hoster E, Hermine O, Walewski J, Trneny M, Geisler CH, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367(6):520–31.

    Article  CAS  PubMed  Google Scholar 

  95. Kluin-Nelemans HC, Hoster E, Hermine O, Walewski J, Geisler CH, Trneny M, et al. Treatment of older patients with mantle cell lymphoma (MCL): long-term follow-up of the randomized European MCL Elderly Trial. J Clin Oncol. 2020;38(3):248–56.

    Article  PubMed  Google Scholar 

  96. Dreyling M, Doorduijn JK, Gine E, Jerkeman M, Walewski J, Hutchings M, et al. Efficacy and safety of ibrutinib combined with standard first-line treatment or as substitute for autologous stem cell transplantation in younger patients with mantle cell lymphoma: results from the randomized Triangle Trial by the European MCL Network. Blood. 2022;140(Supplement 1):1–3.

    Article  Google Scholar 

  97. Wang XV, Hanson CA, Tschumper RC, Lesnick CE, Braggio E, Paietta EM, et al. Measurable residual disease does not preclude prolonged progression-free survival in CLL treated with ibrutinib. Blood. 2021;138(26):2810–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Wu MBBS.

Ethics declarations

Conflict of Interest

Simon Wu declares that he has no conflict of interest. Piers Blombery has received honoraria from Adaptive Biotechnologies, AstraZeneca and Servier. David Westerman has served as a consultant for Pfizer Australia. Constantine Tam has served as a consultant for AbbVie and AstraZeneca, and has received honoraria from AbbVie, BeiGene and Janssen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Supplemental Table 1: MRD in previous studies. Adapted from Jung et al. 2020 [34] and Ladetto et al. 2020[35] with updates. APO: doxorubicin, prednisolone, vincristine. ASCT: autologous stem cell transplant. BM: bone marrow. BR: bendamustine, rituximab. COP: cyclophosphamide, vincristine, prednisolone. DA-EPOCH-R: dose-adjusted etoposide, prednisolone, vincristine, cyclophosphamide, doxorubicin, rituximab. DHAP: dexamethasone, cytarabine, cisplatin. EAR: etoposide, cytarabine, rituximab. EFS: event free survival. FL: follicular lymphoma. IGH: Immunoglobulin heavy chain. MCL: mantle cell lymphoma. MRD: measurable residual disease. MRD-: MRD negative. MRD+: MRD positive. MTX: methotrexate. N/A: data not available. NGS-IGH: next-generation sequencing of IGH clonotype. OS: overall survival. PB: peripheral blood. PFS: progression free survival. PM: prednimustine, mitoxantrone. RC: rituximab, cytarabine. R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone. RT-qPCR: real-time quantitative polymerase chain reaction. R-VAD+C: rituximab, vincristine, doxorubicin, dexamethasone, chlorambucil. SLL: small lymphocytic lymphoma. V: bortezomib. Z: 90Y-ibritumomab-tiuxetan. (DOCX 29.4 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Blombery, P., Westerman, D. et al. Utility of Measurable Residual Disease (MRD) Assessment in Mantle Cell Lymphoma. Curr. Treat. Options in Oncol. 24, 929–947 (2023). https://doi.org/10.1007/s11864-023-01102-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01102-2

Keywords

Navigation