Skip to main content

Advertisement

Log in

New Insights into the Understanding of Mechanisms of Radiation-Induced Heart Disease

  • Cardio-oncology (MG Fradley, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Cancer patients who receive high-dose thoracic radiotherapy may develop radiation-induced heart disease (RIHD). The clinical presentation of RIHD comprises coronary artery atherosclerosis, valvular disease, pericarditis, cardiomyopathy, and conduction defects. These complications have significantly reduced due to the improved radiotherapy techniques. However, such methods still could not avoid heart radiation exposure. Furthermore, people who received relatively low-dose radiation exposures have exhibited significantly elevated RIHD risks in cohort studies of atomic bomb survivors and occupational exposures. The increased potential in exposure to natural and artificial ionizing radiation sources has emphasized the necessity to understand the development of RIHD. The pathological processes of RIHD include endothelial dysfunction, inflammation, fibrosis, and hypertrophy. The underlying mechanisms may involve the changes in oxidative stress, DNA damage response, telomere erosion, mitochondrial dysfunction, epigenetic regulation, circulation factors, protein post-translational modification, and metabolites. This review will discuss the recent advances in the mechanisms of RIHD at cellular and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

  1. Schultz-Hector S, Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys. 2007;67(1):10–8.

    Article  CAS  Google Scholar 

  2. Belzile-Dugas E, Eisenberg MJ. Radiation-induced cardiovascular disease: review of an underrecognized pathology. J Am Heart Assoc. 2021;10(18):e021686.

    Article  Google Scholar 

  3. van Nimwegen FA, Schaapveld M, Janus CP, Krol AD, Petersen EJ, Raemaekers JM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med. 2015;175(6):1007–17.

    Article  Google Scholar 

  4. Cheng YJ, Nie XY, Ji CC, Lin XX, Liu LJ, Chen XM, et al. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. 2017;6(5):e005633.

    Article  Google Scholar 

  5. van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CP, Krol AD, Hauptmann M, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol. 2016;34(3):235–43.

    Article  Google Scholar 

  6. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

    Article  CAS  Google Scholar 

  7. Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, Hayashi M, Konda M, Shore RE. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ. 2010;340:b5349.

    Article  Google Scholar 

  8. Gillies M, Richardson DB, Cardis E, Daniels RD, O’Hagan JA, Haylock R, et al. Mortality from circulatory diseases and other non-cancer outcomes among nuclear workers in France, the United Kingdom and the United States (INWORKS). Radiat Res. 2017;188(3):276–90.

    Article  CAS  Google Scholar 

  9. Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol. 2018;15(3):167–80.

    Article  Google Scholar 

  10. Sasi SP, Yan X, Zuriaga-Herrero M, Gee H, Lee J, Mehrzad R, Song J, Onufrak J, Morgan J, Enderling H, Walsh K, Kishore R, Goukassian DA. Different sequences of fractionated low-dose proton and single iron-radiation-induced divergent biological responses in the heart. Radiat Res. 2017;188(2):191–203.

    Article  CAS  Google Scholar 

  11. Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39.

    Article  Google Scholar 

  12. Gujral DM, Lloyd G, Bhattacharyya S. Radiation-induced valvular heart disease. Heart. 2016;102(4):269–76.

    Article  CAS  Google Scholar 

  13. Raghunathan D, Khilji MI, Hassan SA, Yusuf SW. Radiation-induced cardiovascular disease. Curr Atheroscler Rep. 2017;19(5):22.

    Article  Google Scholar 

  14. Nagane M, Yasui H, Kuppusamy P, Yamashita T, Inanami O. DNA damage response in vascular endothelial senescence: implication for radiation-induced cardiovascular diseases. J Radiat Res. 2021;62(4):564–73.

    Article  CAS  Google Scholar 

  15. Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91 Spec No:179–94.

    Article  Google Scholar 

  16. Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, Hong Z, Liang S. Oxidative stress in radiation-induced cardiotoxicity. Oxid Med Cell Longev. 2020;2020:3579143–15.

    Article  Google Scholar 

  17. Cornforth MN, Loucas BD. A cytogenetic profile of radiation damage. Radiat Res. 2019;191(1):1–19.

    Article  CAS  Google Scholar 

  18. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235–63.

    Article  CAS  Google Scholar 

  19. Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21(2):251–9.

    Article  CAS  Google Scholar 

  20. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.

    Article  CAS  Google Scholar 

  21. Zhang D, Tang B, Xie X, Xiao YF, Yang SM, Zhang JW. The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther. 2015;16(7):1005–13.

    Article  CAS  Google Scholar 

  22. Sazonova EV, Petrichuk SV, Kopeina GS, Zhivotovsky B. A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biol Direct. 2021;16(1):25.

    Article  CAS  Google Scholar 

  23. Yamamoto Y, Minami M, Yoshida K, Nagata M, Miyata T, Yang T, Takayama N, Suzuki K, Okawa M, Yamada K, Miyamoto S. Irradiation accelerates plaque formation and cellular senescence in flow-altered carotid arteries of apolipoprotein E knock-out mice. J Am Heart Assoc. 2021;10(14):e020712.

    Article  CAS  Google Scholar 

  24. Kim KS, Kim JE, Choi KJ, Bae S, Kim DH. Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells. Int J Radiat Biol. 2014;90(1):71–80.

    Article  CAS  Google Scholar 

  25. Cmielova J, Havelek R, Soukup T, Jiroutova A, Visek B, Suchanek J, et al. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int J Radiat Biol. 2012;88(5):393–404.

    Article  CAS  Google Scholar 

  26. Prendergast AM, Cruet-Hennequart S, Shaw G, Barry FP, Carty MP. Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or gamma-irradiation. Cell Cycle. 2011;10(21):3768–77.

    Article  CAS  Google Scholar 

  27. Philipp J, Le Gleut R, Toerne CV, Subedi P, Azimzadeh O, Atkinson MJ, et al. Radiation response of human cardiac endothelial cells reveals a central role of the cGAS-STING pathway in the development of inflammation. Proteomes. 2020;8(4):30.

    Article  CAS  Google Scholar 

  28. Yentrapalli R, Azimzadeh O, Barjaktarovic Z, Sarioglu H, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Haghdoost S, Tapio S. Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics. 2013;13(7):1096–107.

    Article  CAS  Google Scholar 

  29. Van Cauteren T, Tanaka K, Belsack D, Van Gompel G, Kersemans V, Jochmans K, et al. Potential increase in radiation-induced DNA double-strand breaks with higher doses of iodine contrast during coronary CT angiography. Med Phys. 2021;48(11):7526–33.

    Article  Google Scholar 

  30. El-Sayed T, Patel AS, Cho JS, Kelly JA, Ludwinski FE, Saha P, et al. Radiation-induced DNA damage in operators performing endovascular aortic repair. Circulation. 2017;136(25):2406–16.

    Article  CAS  Google Scholar 

  31. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–10.

    Article  Google Scholar 

  32. Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol. 2021;22(4):283–98.

    Article  CAS  Google Scholar 

  33. Shay JW, Wright WE. Hallmarks of telomeres in ageing research. J Pathol. 2007;211(2):114–23.

    Article  CAS  Google Scholar 

  34. Hoffmann J, Richardson G, Haendeler J, Altschmied J, Andres V, Spyridopoulos I. Telomerase as a therapeutic target in cardiovascular disease. Arterioscler Thromb Vasc Biol. 2021;41(3):1047–61.

    Article  CAS  Google Scholar 

  35. di Domenico EG, Auriche C, Viscardi V, Longhese MP, Gilson E, Ascenzioni F. The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions. DNA Repair (Amst). 2009;8(2):209–18.

    Article  Google Scholar 

  36. Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, et al. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med. 2000;192(11):1625–36.

    Article  CAS  Google Scholar 

  37. Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, Alt FW, DePinho RA. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet. 2000;26(1):85–8.

    Article  CAS  Google Scholar 

  38. Latre L, Tusell L, Martin M, Miro R, Egozcue J, Blasco MA, et al. Shortened telomeres join to DNA breaks interfering with their correct repair. Exp Cell Res. 2003;287(2):282–8.

    Article  CAS  Google Scholar 

  39. Li P, Hou M, Lou F, Bjorkholm M, Xu D. Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int J Biochem Cell Biol. 2012;44(9):1531–40.

    Article  CAS  Google Scholar 

  40. Berardinelli F, Antoccia A, Buonsante R, Gerardi S, Cherubini R, De Nadal V, et al. The role of telomere length modulation in delayed chromosome instability induced by ionizing radiation in human primary fibroblasts. Environ Mol Mutagen. 2013;54(3):172–9.

    Article  CAS  Google Scholar 

  41. Nuta O, Rothkamm K, Darroudi F. The role of telomerase in radiation-induced genomic instability. Radiat Res. 2020;193(5):451–9.

    Article  CAS  Google Scholar 

  42. Christensen R, Alsner J, Brandt Sorensen F, Dagnaes-Hansen F, Kolvraa S, Serakinci N. Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation. Regen Med. 2008;3(6):849–61.

    Article  CAS  Google Scholar 

  43. Guan JZ, Guan WP, Maeda T, Makino N. Changes in telomere length distribution in low-dose X-ray-irradiated human umbilical vein endothelial cells. Mol Cell Biochem. 2014;396(1-2):129–35.

    Article  CAS  Google Scholar 

  44. Maeda T, Nakamura K, Atsumi K, Hirakawa M, Ueda Y, Makino N. Radiation-associated changes in the length of telomeres in peripheral leukocytes from inpatients with cancer. Int J Radiat Biol. 2013;89(2):106–9.

    Article  CAS  Google Scholar 

  45. Sharma GG, Hall EJ, Dhar S, Gupta A, Rao PH, Pandita TK. Telomere stability correlates with longevity of human beings exposed to ionizing radiations. Oncol Rep. 2003;10(6):1733–6.

    Google Scholar 

  46. Boniewska-Bernacka E, Panczyszyn A, Klinger M. Telomeres and telomerase in risk assessment of cardiovascular diseases. Exp Cell Res. 2020;397(2):112361.

    Article  CAS  Google Scholar 

  47. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM 3rd, Bohr VA. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015;25(3):158–70.

    Article  CAS  Google Scholar 

  48. Kumar Sharma R, Chafik A, Bertolin G. Mitochondrial transport, partitioning, and quality control at the heart of cell proliferation and fate acquisition. Am J Physiol Cell Physiol. 2022;322(2):C311–C25.

    Article  Google Scholar 

  49. De R, Mazumder S, Bandyopadhyay U. Mediators of mitophagy that regulate mitochondrial quality control play crucial role in diverse pathophysiology. Cell Biol Toxicol. 2021;37(3):333–66.

    Article  Google Scholar 

  50. Onishi M, Okamoto K. Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Lett. 2021;595(8):1239–63.

    Article  CAS  Google Scholar 

  51. van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013;5(6):a011072.

    Google Scholar 

  52. Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med. 2017;107:216–27.

    Article  CAS  Google Scholar 

  53. Fu Y, Tigano M, Sfeir A. Safeguarding mitochondrial genomes in higher eukaryotes. Nat Struct Mol Biol. 2020;27(8):687–95.

    Article  CAS  Google Scholar 

  54. Quan Y, Xin Y, Tian G, Zhou J, Liu X. Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging. Oxid Med Cell Longev. 2020;2020:9423593–11.

    Article  Google Scholar 

  55. Zhong F, Liang S, Zhong Z. Emerging role of mitochondrial DNA as a major driver of inflammation and disease progression. Trends Immunol. 2019;40(12):1120–33.

    Article  CAS  Google Scholar 

  56. Nissanka N, Minczuk M, Moraes CT. Mechanisms of mitochondrial DNA deletion formation. Trends Genet. 2019;35(3):235–44.

    Article  CAS  Google Scholar 

  57. Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res. 2020;48(20):11244–58.

    Article  CAS  Google Scholar 

  58. Chen Y, Gao H, Ye W. Mitochondrial DNA mutations induced by carbon ions radiation: a preliminary study. Dose Response. 2018;16(3):1559325818789842.

    Article  CAS  Google Scholar 

  59. Guo X, Zhang M, Gao Y, Cao G, Yang Y, Lu D, Li W. A genome-wide view of mutations in respiration-deficient mutants of Saccharomyces cerevisiae selected following carbon ion beam irradiation. Appl Microbiol Biotechnol. 2019;103(4):1851–64.

    Article  CAS  Google Scholar 

  60. Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics. 2011;11(16):3299–311.

    Article  CAS  Google Scholar 

  61. Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Schäfer A, Atkinson MJ, Zischka H, Tapio S. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One. 2011;6(12):e27811.

    Article  CAS  Google Scholar 

  62. Barjaktarovic Z, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dorr W, et al. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure. Radiother Oncol. 2013;106(3):404–10.

    Article  CAS  Google Scholar 

  63. Papiez A, Azimzadeh O, Azizova T, Moseeva M, Anastasov N, Smida J, Tapio S, Polanska J. Integrative multiomics study for validation of mechanisms in radiation-induced ischemic heart disease in Mayak workers. PLoS One. 2018;13(12):e0209626.

    Article  CAS  Google Scholar 

  64. Wei J, Wang B, Wang H, Meng L, Zhao Q, Li X, Xin Y, Jiang X. Radiation-induced normal tissue damage: oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev. 2019;2019:3010342–11.

    Article  Google Scholar 

  65. Belli M, Tabocchini MA. Ionizing radiation-induced epigenetic modifications and their relevance to radiation protection. Int J Mol Sci. 2020;21(17):5993.

    Article  CAS  Google Scholar 

  66. Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics. 2022;17(1):59–80.

    Article  Google Scholar 

  67. Ren W, Gao L, Song J. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel). 2018;9(12):620.

    Article  Google Scholar 

  68. Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol. 2017;93(5):457–69.

    Article  CAS  Google Scholar 

  69. Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288.

    Article  CAS  Google Scholar 

  70. Zemmour H, Planer D, Magenheim J, Moss J, Neiman D, Gilon D, Korach A, Glaser B, Shemer R, Landesberg G, Dor Y. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat Commun. 2018;9(1):1443.

    Article  Google Scholar 

  71. Wang Y, Yang X, Jiang A, Wang W, Li J, Wen J. Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. FASEB J. 2019;33(12):13145–60.

    Article  CAS  Google Scholar 

  72. Qiu Y, Gao Y, Yu D, Zhong L, Cai W, Ji J, Geng F, Tang G, Zhang H, Cao J, Zhang J, Zhang S. Genome-wide analysis reveals zinc transporter ZIP9 regulated by DNA methylation promotes radiation-induced skin fibrosis via the TGF-beta signaling pathway. J Invest Dermatol. 2020;140(1):94–102. e7

  73. Yao Y, Chen LF, Li J, Chen J, Tian XL, Wang H, et al. Altered DNA methylation and gene expression profiles in radiation-induced heart fibrosis of Sprague-Dawley rats. Radiat Res. 2022;198:154–61.

    Article  CAS  Google Scholar 

  74. Koturbash I, Miousse IR, Sridharan V, Nzabarushimana E, Skinner CM, Melnyk SB, Pavliv O, Hauer-Jensen M, Nelson GA, Boerma M. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res. 2016;787:43–53.

    Article  CAS  Google Scholar 

  75. Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32(1):42–56.

    Article  CAS  Google Scholar 

  76. Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci. 2021;78(10):4467–86.

    Article  CAS  Google Scholar 

  77. Barjaktarovic Z, Merl-Pham J, Azimzadeh O, Kempf SJ, Raj K, Atkinson MJ, Tapio S. Low-dose radiation differentially regulates protein acetylation and histone deacetylase expression in human coronary artery endothelial cells. Int J Radiat Biol. 2017;93(2):156–64.

    Article  CAS  Google Scholar 

  78. Barjaktarovic Z, Kempf SJ, Sriharshan A, Merl-Pham J, Atkinson MJ, Tapio S. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells. J Radiat Res. 2015;56(4):623–32.

    Article  CAS  Google Scholar 

  79. Gong F, Miller KM. Histone methylation and the DNA damage response. Mutat Res Rev Mutat Res. 2019;780:37–47.

    Article  CAS  Google Scholar 

  80. Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. Low-dose ionizing radiation exposure, oxidative stress and epigenetic programing of health and disease. Radiat Res. 2017;188(4.2):525–38.

    Article  CAS  Google Scholar 

  81. Kura B, Babal P, Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol. 2017;95(10):1236–44.

    Article  CAS  Google Scholar 

  82. Hu Y, Xia W, Hou M. Macrophage migration inhibitory factor serves a pivotal role in the regulation of radiation-induced cardiac senescencethrough rebalancing the microRNA-34a/sirtuin 1 signaling pathway. Int J Mol Med. 2018;42(5):2849–58.

    Google Scholar 

  83. Viczenczova C, Kura B, Egan Benova T, Yin C, Kukreja RC, Slezak J, et al. Irradiation-induced cardiac Connexin-43 and miR-21 responses are hampered by treatment with atorvastatin and aspirin. Int J Mol Sci. 2018;19(4):1128.

    Article  Google Scholar 

  84. Kura B, Yin C, Frimmel K, Krizak J, Okruhlicova L, Kukreja RC, et al. Changes of microRNA-1, -15b and -21 levels in irradiated rat hearts after treatment with potentially radioprotective drugs. Physiol Res. 2016;65(Suppl 1):S129–37.

    Article  CAS  Google Scholar 

  85. Aryankalayil MJ, Martello S, Bylicky MA, Chopra S, May JM, Shankardass A, MacMillan L, Sun L, Sanjak J, Vanpouille-Box C, Eke I, Coleman CN. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J Transl Med. 2021;19(1):336.

    Article  CAS  Google Scholar 

  86. Liang X, Zheng S, Cui J, Yu D, Yang G, Zhou L, Wang B, Cai L, Li W. Alterations of microRNA expression in the liver, heart, and testis of mice upon exposure to repeated low-dose radiation. Dose Response. 2018;16(3):1559325818799561.

    Article  CAS  Google Scholar 

  87. Hawkins PG, Sun Y, Dess RT, Jackson WC, Sun G, Bi N, Tewari M, Hayman JA, Kalemkerian GP, Gadgeel SM, Lawrence TS, Haken RKT, Matuszak MM, Kong FM, Schipper MJ, Jolly S. Circulating microRNAs as biomarkers of radiation-induced cardiac toxicity in non-small-cell lung cancer. J Cancer Res Clin Oncol. 2019;145(6):1635–43.

    Article  CAS  Google Scholar 

  88. Dinh TK, Fendler W, Chalubinska-Fendler J, Acharya SS, O’Leary C, Deraska PV, et al. Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer. Radiat Oncol. 2016;11:61.

    Article  Google Scholar 

  89. Slezak J, Kura B, Babal P, Barancik M, Ferko M, Frimmel K, Kalocayova B, Kukreja RC, Lazou A, Mezesova L, Okruhlicova L, Ravingerova T, Singal PK, Szeiffova Bacova B, Viczenczova C, Vrbjar N, Tribulova N. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can J Physiol Pharmacol. 2017;95(10):1190–203.

    Article  CAS  Google Scholar 

  90. King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edwin Bierman Award Lecture. Diabetes. 2016;65(6):1462–71.

    Article  CAS  Google Scholar 

  91. Sugamura K, Keaney JF Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med. 2011;51(5):978–92.

    Article  CAS  Google Scholar 

  92. Kenchegowda D, Legesse B, Hritzo B, Olsen C, Aghdam S, Kaur A, Culp W, Derrien-Colemyn A, Severson G, Moroni M. Selective insulin-like growth factor resistance associated with heart hemorrhages and poor prognosis in a novel preclinical model of the hematopoietic acute radiation syndrome. Radiat Res. 2018;190(2):164–75.

    Article  CAS  Google Scholar 

  93. Boerma M, Kruse JJ, van Loenen M, Klein HR, Bart CI, Zurcher C, et al. Increased deposition of von Willebrand factor in the rat heart after local ionizing irradiation. Strahlenther Onkol. 2004;180(2):109–16.

    Article  Google Scholar 

  94. Slezak J, Kura B, Ravingerova T, Tribulova N, Okruhlicova L, Barancik M. Mechanisms of cardiac radiation injury and potential preventive approaches. Can J Physiol Pharmacol. 2015;93(9):737–53.

    Article  CAS  Google Scholar 

  95. Brasier AR. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res. 2010;86(2):211–8.

    Article  CAS  Google Scholar 

  96. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21(1):103–15.

    Article  CAS  Google Scholar 

  97. Farhood B, Aliasgharzadeh A, Amini P, Saffar H, Motevaseli E, Rezapoor S, et al. Radiation-induced dual oxidase upregulation in rat heart tissues: protective effect of melatonin. Medicina (Kaunas). 2019;55(7):317.

    Article  Google Scholar 

  98. Ahamed J, Laurence J. Role of platelet-derived transforming growth factor-beta1 and reactive oxygen species in radiation-induced organ fibrosis. Antioxid Redox Signal. 2017;27(13):977–88.

    Article  CAS  Google Scholar 

  99. Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-beta1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life. 2019;71(11):1729–39.

    Article  CAS  Google Scholar 

  100. Hanna A, Frangogiannis NG. The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med. 2019;6:140.

    Article  CAS  Google Scholar 

  101. Nadlonek NA, Weyant MJ, Yu JA, Cleveland JC Jr, Reece TB, Meng X, Fullerton DA. Radiation induces osteogenesis in human aortic valve interstitial cells. J Thorac Cardiovasc Surg. 2012;144(6):1466–70.

    Article  CAS  Google Scholar 

  102. Aguado BA, Schuetze KB, Grim JC, Walker CJ, Cox AC, Ceccato TL, et al. Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Sci Transl Med. 2019;11(509):eaav3233.

    Article  CAS  Google Scholar 

  103. Azimzadeh O, Sievert W, Sarioglu H, Yentrapalli R, Barjaktarovic Z, Sriharshan A, Ueffing M, Janik D, Aichler M, Atkinson MJ, Multhoff G, Tapio S. PPAR alpha: a novel radiation target in locally exposed Mus musculus heart revealed by quantitative proteomics. J Proteome Res. 2013;12(6):2700–14.

    Article  CAS  Google Scholar 

  104. Barjaktarovic Z, Merl-Pham J, Braga-Tanaka I, Tanaka S, Hauck SM, Saran A, et al. Hyperacetylation of cardiac mitochondrial proteins is associated with metabolic impairment and sirtuin downregulation after chronic total body irradiation of ApoE (-/-) mice. Int J Mol Sci. 2019;20(20):5239.

    Article  CAS  Google Scholar 

  105. Rosen E, Kryndushkin D, Aryal B, Gonzalez Y, Chehab L, Dickey J, Rao VA. Acute total body ionizing gamma radiation induces long-term adverse effects and immediate changes in cardiac protein oxidative carbonylation in the rat. PLoS One. 2020;15(6):e0233967.

    Article  CAS  Google Scholar 

  106. Sridharan V, Aykin-Burns N, Tripathi P, Krager KJ, Sharma SK, Moros EG, Corry PM, Nowak G, Hauer-Jensen M, Boerma M. Radiation-induced alterations in mitochondria of the rat heart. Radiat Res. 2014;181(3):324–34.

    Article  CAS  Google Scholar 

  107. Tapio S. Using proteomics to explore the effects of radiation on the heart - impacts for medicine. Expert Rev Proteomics. 2017;14(4):277–9.

    Article  CAS  Google Scholar 

  108. Gramatyka M, Sokol M. Radiation metabolomics in the quest of cardiotoxicity biomarkers: the review. Int J Radiat Biol. 2020;96(3):349–59.

    Article  CAS  Google Scholar 

  109. Subramanian V, Seemann I, Merl-Pham J, Hauck SM, Stewart FA, Atkinson MJ, Tapio S, Azimzadeh O. Role of TGF beta and PPAR alpha signaling pathways in radiation response of locally exposed heart: integrated global transcriptomics and proteomics analysis. J Proteome Res. 2017;16(1):307–18.

    Article  CAS  Google Scholar 

  110. Xu P, Yi Y, Luo Y, Liu Z, Xu Y, Cai J, et al. Radiation induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Mol Med Rep. 2021;24(6):842.

    Article  CAS  Google Scholar 

  111. Yan R, Li X, Song J, Guo M, Cai H, Wu Z, Wu P, Li L, Yang M, Wang Y, Li S. Metabolic changes precede radiation-induced cardiac remodeling in beagles: using noninvasive (18)F-FDG ((18)F-fludeoxyglucose) and (13)N-ammonia positron emission tomography/computed tomography scans. J Am Heart Assoc. 2020;9(18):e016875.

    Article  CAS  Google Scholar 

  112. Gramatyka M. Boguszewicz, Ciszek M, Gabrys D, Kulik R, Sokol M. Metabolic changes in mice cardiac tissue after low-dose irradiation revealed by 1H NMR spectroscopy. J Radiat Res. 2020;61(1):14–26.

    Article  CAS  Google Scholar 

  113. Averbeck D, Rodriguez-Lafrasse C. Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts. Int J Mol Sci. 2021;22(20):11047.

    Article  CAS  Google Scholar 

  114. Tigano M, Vargas DC, Tremblay-Belzile S, Fu Y, Sfeir A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature. 2021;591(7850):477–81.

    Article  CAS  Google Scholar 

  115. Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin X, Jiang X. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci. 2019;15(10):2128–38.

    Article  CAS  Google Scholar 

  116. Hurst S, Hoek J, Sheu SS. Mitochondrial Ca(2+) and regulation of the permeability transition pore. J Bioenerg Biomembr. 2017;49(1):27–47.

    Article  CAS  Google Scholar 

  117. Wang B, Wei J, Meng L, Wang H, Qu C, Chen X, Xin Y, Jiang X. Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomed Pharmacother. 2020;121:109560.

    Article  CAS  Google Scholar 

  118. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61.

    Article  CAS  Google Scholar 

  119. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.

    Article  CAS  Google Scholar 

  120. Abdelgawad IY, Sadak KT, Lone DW, Dabour MS, Niedernhofer LJ, Zordoky BN. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. Pharmacol Ther. 2021;221:107751.

    Article  CAS  Google Scholar 

  121. Marcoux S, Le ON, Langlois-Pelletier C, Laverdiere C, Hatami A, Robaey P, et al. Expression of the senescence marker p16INK4a in skin biopsies of acute lymphoblastic leukemia survivors: a pilot study. Radiat Oncol. 2013;8:252.

    Article  Google Scholar 

  122. Ariffin H, Azanan MS, Abd Ghafar SS, Oh L, Lau KH, Thirunavakarasu T, Sedan A, Ibrahim K, Chan A, Chin TF, Liew FF, Jeyamogan S, Rosli ES, Baharudin R, Yap TY, Skinner R, Lum SH, Hainaut P. Young adult survivors of childhood acute lymphoblastic leukemia show evidence of chronic inflammation and cellular aging. Cancer. 2017;123(21):4207–14.

    Article  CAS  Google Scholar 

  123. Manda K, Kavanagh JN, Buttler D, Prise KM, Hildebrandt G. Low dose effects of ionizing radiation on normal tissue stem cells. Mutat Res Rev Mutat Res. 2014;761:6–14.

    Article  CAS  Google Scholar 

  124. Luo L, Yan C, Urata Y, Hasan AS, Goto S, Guo CY, Zhang S, Li TS. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice. Sci Rep. 2017;7:40959.

    Article  CAS  Google Scholar 

  125. Luo L, Nishi K, Urata Y, Yan C, Hasan AS, Goto S, Kudo T, Li ZL, Li TS. Ionizing radiation impairs endogenous regeneration of infarcted heart: an in vivo (18)F-FDG PET/CT and (99m)Tc-Tetrofosmin SPECT/CT study in mice. Radiat Res. 2017;187(1):89–97.

    Article  CAS  Google Scholar 

  126. Luo L, Yan C, Fuchi N, Kodama Y, Zhang X, Shinji G, Miura K, Sasaki H, Li TS. Mesenchymal stem cell-derived extracellular vesicles as probable triggers of radiation-induced heart disease. Stem Cell Res Ther. 2021;12(1):422.

    Article  CAS  Google Scholar 

  127. Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, et al. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell. 2017;31(1):142–56.

    Article  CAS  Google Scholar 

  128. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res. 2018;122(12):1675–88.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81802086, 81860425), the Scientific Research Project of Jiangsu Provincial Healthy Commission (grant no. ZDB2020024), the project of Science and Technology Department of Jiangxi Province (grant no. 20204BCJ23018), and the Young Science and Technology Innovation Team (grant no. TD202005) of Xuzhou Medical University. The funders had no role in the study design, data collection, and analysis; decision to publish; or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Yan PhD or Lan Luo PhD.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KX., Ye, C., Yang, X. et al. New Insights into the Understanding of Mechanisms of Radiation-Induced Heart Disease. Curr. Treat. Options in Oncol. 24, 12–29 (2023). https://doi.org/10.1007/s11864-022-01041-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-01041-4

Keywords

Navigation