Skip to main content

Advertisement

Log in

Novel and Promising Systemic Treatment Approaches in Mesothelioma

  • Lung Cancer (TA Leal, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

There was limited progress in the development of novel systemic approaches in the treatment of advanced malignant mesothelioma for years following the publication of the pivotal phase III trial of Vogelzang et al. that established the cisplatin/pemetrexed regimen as a standard 1st-line systemic therapy. Since then, over the last several years, a significant step forward has been made, with incorporation of immune checkpoint inhibitors and anti-angiogenic agents. In addition, better appreciation of mesothelioma biology has allowed detection of novelmolecular therapeutic targets. All the above-mentioned strategies, along with the additional promising approaches represented by adoptive T cell therapy, dendritic cell therapy, cancer vaccines, oncoviral therapy, and agents targeting mesothelin are discussed in this review. The clinical research to identify effective biologic targets and treatment combinations in malignant mesothelioma is ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of 604 occupational origin. J Occup Med. 1992;34(7):718–721.605.

    CAS  PubMed  Google Scholar 

  2. American Cancer Society. Cancer Facts & Figures. Special 606 Section: Rare Cancers in Adults. Cancer Facts Fig Spec Sect 607. Rare Cancers Adults. 2017:30–39.608.

  3. Curran BD, Sahmoud T, Therasse P, Van MJ, Postmus PE. 609 Giaccone G. Prognostic factors in patients with pleural mesothelioma: 610 the European Organization for Research and Treatment of Cancer 611 Experience. Society. 1998;16(1):145–152.612.

    CAS  Google Scholar 

  4. Herndon JE, Green MR, Chahinian AP, Corson JM, Suzuki Y, Vogelzang NJ. Factors predictive of survival among 337 patients with 614 mesothelioma treated between 1984 and 1994 by the Cancer and 615 Leukemia Group B. Chest. 1998;113(3):723–731.616. https://doi.org/10.1378/chest.113.3.723617.

    Article  CAS  PubMed  Google Scholar 

  5. Edwards JG, Leverment JN, Spyt TJ, Waller DA, O’Byrne KJ. 618 Prognostic factors for malignant mesothelioma in Leicester: validation 619 of EORTC and CALGB scores. Thorax. 1999;54(suppl. 3):731–5.

    Google Scholar 

  6. Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–44. https://doi.org/10.1200/JCO.2003.11.136.

  7. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med. 2015;372:2018–28. https://doi.org/10.1056/nejmoa1501824.

    Article  PubMed  Google Scholar 

  8. Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18. https://doi.org/10.1016/S1470-2045(15)00083-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alley EW, Lopez J, Santoro A, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017;18:623–30. https://doi.org/10.1016/S1470-2045(17)30169-9.

    Article  CAS  PubMed  Google Scholar 

  10. Desai A, Karrison T, Rose B, et al. OA08.03 Phase II Trial of Pembrolizumab (NCT02399371) In Previously-Treated Malignant Mesothelioma (MM): Final Analysis. J Thorac Oncol. 2018;13:S339. https://doi.org/10.1016/j.jtho.2018.08.277.

    Article  Google Scholar 

  11. Popat S, Curioni-Fontecedro A, Polydoropoulou V, et al. LBA91 PR A multicentre randomized phase III trial comparing pembrolizumab (P) vs single agent chemotherapy (CT) for advanced pre-treated malignant pleural mesothelioma (MPM): results from the European Thoracic Oncology Platform (ETOP 9-15) PROMISE-meso trial. 2019. https://doi.org/10.1093/annonc/mdz394.

  12. Myers Squibb B highlights of prescribing information

  13. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46. https://doi.org/10.1056/NEJMoa1910836.

    Article  CAS  PubMed  Google Scholar 

  14. Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019;20:1370–85. https://doi.org/10.1016/S1470-2045(19)30413-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okada M, Kijima T, Aoe K, et al. Clinical efficacy and safety of nivolumab: results of a multicenter, open-label, single-arm, Japanese phase II study in malignant pleural mesothelioma (MERIT). Clin Cancer Res. 2019;25:5485–92. https://doi.org/10.1158/1078-0432.CCR-19-0103.

    Article  CAS  PubMed  Google Scholar 

  16. Quispel-Janssen J, van der Noort V, de Vries JF, et al. Programmed death 1 blockade with nivolumab in patients with recurrent malignant pleural mesothelioma. J Thorac Oncol. 2018;13:1569–76. https://doi.org/10.1016/j.jtho.2018.05.038.

    Article  PubMed  Google Scholar 

  17. Fennel D, Ottensmeier, Califano R et al (2021) Nivolumab versus placebo in relapsed malignant mesothelioma: preliminary results from the CONFIRM phase 3 trial. Present Int Assoc Study Lung Cancer 2020 World Conf Lung Cancer. The study establishing the standard 2nd-line systemic approach in malignant mesothelioma

  18. Hassan R, Thomas A, Nemunaitis JJ, et al. Efficacy and safety of avelumab treatment in patients with advanced unresectable mesothelioma: phase 1b results from the JAVELIN Solid Tumor Trial. JAMA Oncol. 2019;5:351–7. https://doi.org/10.1001/jamaoncol.2018.5428.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Calabrò L, Morra A, Fonsatti E, et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2013;14:1104–11. https://doi.org/10.1016/S1470-2045(13)70381-4.

    Article  CAS  PubMed  Google Scholar 

  20. Calabrò L, Morra A, Fonsatti E, et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study. Lancet Respir Med. 2015;3:301–9. https://doi.org/10.1016/S2213-2600(15)00092-2.

    Article  CAS  PubMed  Google Scholar 

  21. Maio M, Scherpereel A, Calabrò L, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017;18:1261–73. https://doi.org/10.1016/S1470-2045(17)30446-1.

    Article  CAS  PubMed  Google Scholar 

  22. Disselhorst MJ, Quispel-Janssen J, Lalezari F, et al. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): results of a prospective, single-arm, phase 2 trial. Lancet Respir Med. 2019;7:260–70. https://doi.org/10.1016/S2213-2600(18)30420-X.

    Article  CAS  PubMed  Google Scholar 

  23. • Scherpereel A, Mazieres J, Greillier L, et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. 2019;20:239–53. https://doi.org/10.1016/S1470-2045(18)30765-4. A phase II, randomized, non-comparative trial assessing nivolumab and the combination of nivolumab and ipilimumab as a 2nd- or later-line treatment in advanced mesotehlioma.

    Article  CAS  PubMed  Google Scholar 

  24. Zalcman G, Mazieres J, Greillier L, et al. Second/third-line nivolumab vs nivo plus ipilimumab in malignant pleural mesothelioma: long-term results of IFCT-1501 MAPS2 phase IIR trial with a focus on hyperprogression (HPD). Ann Oncol. 2019;30:v747. https://doi.org/10.1093/annonc/mdz266.

    Article  Google Scholar 

  25. •• Baas P, Scherpereel A, Nowak AK, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet. 2021;397:375–86. https://doi.org/10.1016/S0140-6736(20)32714-8. The study establishing the new standard 1st -line systemic treatment in malignant mesothelioma.

    Article  CAS  PubMed  Google Scholar 

  26. Calabrò L, Morra A, Giannarelli D, et al. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Respir Med. 2018;6:451–60. https://doi.org/10.1016/S2213-2600(18)30151-6.

    Article  PubMed  Google Scholar 

  27. Nowak A, Kok P, Lesterhuis W, et al. OA08.02 DREAM - a phase 2 trial of durvalumab with first line chemotherapy in mesothelioma: final result. J Thorac Oncol. 2018;13:S338–9. https://doi.org/10.1016/j.jtho.2018.08.276.

    Article  Google Scholar 

  28. • Nowak AK, Lesterhuis WJ, Kok PS, et al. Durvalumab with first-line chemotherapy in previously untreated malignant pleural mesothelioma (DREAM): a multicentre, single-arm, phase 2 trial with a safety run-in. Lancet Oncol. 2020;21:1213–23. https://doi.org/10.1016/S1470-2045(20)30462-9. The non-comparative trial assessing the preliminary efficacy of the combined chemo-immunotherapy in treatment-naïve advanced mesothelioma.

    Article  CAS  PubMed  Google Scholar 

  29. Hegmans JPJJ, Hemmes A, Aerts JG, et al. Immunotherapy of murine malignant mesothelioma using tumor lysate-pulsed dendritic cells. Am J Respir Crit Care Med. 2005;171:1168–77. https://doi.org/10.1164/rccm.200501-057OC.

    Article  PubMed  Google Scholar 

  30. Hegmans JP, Veltman JD, Lambers ME, et al. Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am J Respir Crit Care Med. 2010;181:1383–90. https://doi.org/10.1164/rccm.200909-1465OC.

    Article  CAS  PubMed  Google Scholar 

  31. Cornelissen R, Hegmans JPJJ, Maat APWM, et al. Extended tumor control after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am J Respir Crit Care Med. 2016;193:1023–31. https://doi.org/10.1164/rccm.201508-1573OC.

    Article  CAS  PubMed  Google Scholar 

  32. JGJV DGPL, Cornelissen R, et al. Autologous dendritic cells pulsed with allogeneic tumor cell lysate in mesothelioma: from mouse to human. Clin Cancer Res. 2018;24:766–76. https://doi.org/10.1158/1078-0432.CCR-17-2522.

    Article  CAS  Google Scholar 

  33. Belderbos RA, Baas P, Berardi R, et al. A multicenter, randomized, phase II/III study of dendritic cells loaded with allogeneic tumor cell lysate (MesoPher) in subjects with mesothelioma as maintenance therapy after chemotherapy: DENdritic cell Immunotherapy for Mesothelioma (DENIM) trial. Transl Lung Cancer Res. 2019;8:280–5. https://doi.org/10.21037/tlcr.2019.05.05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belderbos R, Dammeijer F, Gulijk M, et al. MA12.09 Checkpoint inhibitors synergize with dendritic cell-therapy in pre-clinical models and mesothelioma patients. J Thorac Oncol. 2019;14:S298–9. https://doi.org/10.1016/j.jtho.2019.08.598.

    Article  Google Scholar 

  35. Eguchi T, Kadota K, Mayor M, et al. Cancer antigen profiling for malignant pleural mesothelioma immunotherapy: expression and coexpression of mesothelin, cancer antigen 125, and Wilms tumor 1. Oncotarget. 2017;8:77872–82. https://doi.org/10.18632/oncotarget.20845.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zauderer MG, Tsao AS, Dao T, et al. A randomized phase II trial of adjuvant galinpepimut-S, WT-1 analogue peptide vaccine, after multimodality therapy for patients with malignant pleural mesothelioma. Clin Cancer Res. 2017;23:7483–9. https://doi.org/10.1158/1078-0432.CCR-17-2169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hassan R, Alley E, Kindler H, et al. Clinical response of live-attenuated, Listeria monocytogenes expressing mesothelin (CRS-207) with chemotherapy in patients with malignant pleural mesothelioma. Clin Cancer Res. 2019;25:5787–98. https://doi.org/10.1158/1078-0432.CCR-19-0070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alley EW, Tanvetyanon T, Jahan TM, et al. A phase II single-arm study of CRS-207 with pembrolizumab (pembro) in previously treated malignant pleural mesothelioma (MPM). J Clin Oncol. 2019;37:29. https://doi.org/10.1200/jco.2019.37.8_suppl.29.

    Article  Google Scholar 

  39. Belderbos RA, Vroman H, Aerts JGJV. Cellular immunotherapy and locoregional administration of CAR T-cells in malignant pleural mesothelioma. Front Oncol. 2020;10:777.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haas AR, Tanyi JL, O’Hara MH, et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther. 2019;27:1919–29. https://doi.org/10.1016/j.ymthe.2019.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. PS, Zauderer MG, Rusch VW, et al (2019) Abstract CT036: phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. In: Cancer Research. American Association for Cancer Research (AACR), pp CT036–CT036

  42. Adusumilli PS, Zauderer GM, Rusch VW, et al. Regional delivery of mesothelintargeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent. JCO. 2019;37(15suppl):2511. https://doi.org/10.1200/JCO.2019.37.15_suppl.2511 Trial demonstrating promising preliminary efficacy of the mesothelin-targeted CAR T cells followed by immune-checkpoint inhibitors in advanced mesothelioma.

    Article  Google Scholar 

  43. König J, Tolnay E, Wiethege T, Müller K. Co-expression of vascular endothelial growth factor and its receptor flt-1 in malignant pleural mesothelioma. Respiration. 2000;67(1):36–40. https://doi.org/10.1159/000029460.

    Article  PubMed  Google Scholar 

  44. König JE, Tolnay E, Wiethege T, Müller KM. Expression of vascular endothelial growth factor in diffuse malignant pleural mesothelioma. Virchows Arch. 1999l;435(1):8–12. https://doi.org/10.1007/s004280050388.

    Article  PubMed  Google Scholar 

  45. Strizzi L, Catalano A, Vianale G, Orecchia S, Casalini A, Tassi G, et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol. 2001;193(4):468–75. https://doi.org/10.1002/path.824.

  46. Kindler HL, Karrison TG, Gandara DR, Lu C, Krug LM, Stevenson JP, et al. Multicenter, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab or placebo in patients with malignant mesothelioma. J Clin Oncol. 2012;30(20):2509–15. https://doi.org/10.1200/JCO.2011.41.5869.

  47. Ceresoli GL, Zucali PA, Mencoboni M, Botta M, Grossi F, Cortinovis D, et al. Phase II study of pemetrexed and carboplatin plus bevacizumab as first-line therapy in malignant pleural mesothelioma. Br J Cancer. 2013;109(3):552–8. https://doi.org/10.1038/bjc.2013.368.

  48. Dowell JE, Dunphy FR, Taub RN, Gerber DE, Ngov L, Yan J, et al. A multicenter phase II study of cisplatin, pemetrexed, and bevacizumab in patients with advanced malignant mesothelioma. Lung Cancer. 2012;77(3):567–71. https://doi.org/10.1016/j.lungcan.2012.05.111.

  49. Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387(10026):1405–14.

    Article  CAS  PubMed  Google Scholar 

  50. Kindler HL, Ismaila N, Hassan R. Treatment of malignant pleural mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract. 2018 Apr;14(4):256–64. https://doi.org/10.1200/JOP.17.00012.

  51. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. NCCN Guidelines: Insights malignant pleural mesothelioma, version 3.2016. JNCCN Journal of the National Comprehensive Cancer Network Harborside Press. 2016;14:825–36.

    Article  Google Scholar 

  52. Tada Y, Togashi Y, Kotani D, Kuwata T, Sato E, Kawazoe A, et al. Targeting VEGFR2 with Ramucirumab strongly impacts effector/ activated regulatory T cells and CD8+ T cells in the tumor microenvironment. J Immunother Cancer. 2018;6(1):106. https://doi.org/10.1186/s40425-018-0403-1.

  53. Pagano M, Ceresoli GL, Zucali PA, Pasello G, Garassino MC, Grosso F, et al. Randomized phase II study on gemcitabine with or without ramucirumab as second-line treatment for advanced malignant pleural mesothelioma (MPM): results of Italian Rames Study. J Clin Oncol. 2020;38(15_suppl):9004. The trial addressing the value of anti-angiogenic monoclonal antibodies in previously treated advanced mesothelioma.

  54. Mathy A, Baas P, Dalesio O, Van Zandwijk N. Limited efficacy of imatinib mesylate in malignant mesothelioma: a phase II trial. Lung Cancer. 2005;50(1):83–6.

    Article  PubMed  Google Scholar 

  55. Jahan TM, Gu L, Wang X, Kratzke RA, Dudek AZ, Green MR, et al. Vatalanib (V) for patients with previously untreated advanced malignant mesothelioma (MM): a phase II study by the Cancer and Leukemia Group B (CALGB 30107). J Clin Oncol. 2006;24(18_suppl):7081.

    Article  Google Scholar 

  56. Nowak AK, Millward MJ, Creaney J, Francis RJ, Dick IM, Hasani A, et al. a phase ii study of intermittent sunitinib malate as second-line therapy in progressive malignant pleural mesothelioma. J Thorac Oncol. 2012;7(9):1449–56.

    Article  CAS  PubMed  Google Scholar 

  57. Papa S, Popat S, Shah R, Prevost AT, Lal R, McLennan B, et al. Phase 2 study of sorafenib in malignant mesothelioma previously treated with platinum-containing chemotherapy. J Thorac Oncol. 2013;8(6):783–7.

    Article  CAS  PubMed  Google Scholar 

  58. Grosso F, Steele N, Novello S, Nowak AK, Popat S, Greillier L, et al. Nintedanib plus pemetrexed/cisplatin in patients with malignant pleural mesothelioma: phase II results from the randomized, placebo-controlled LUME-Meso Trial. J Clin Oncol. 2017;35(31):3591–600. https://doi.org/10.1200/JCO.2017.72.9012.

  59. Scagliotti GV, Gaafar R, Nowak AK, Reck M, Tsao AS, van Meerbeeck J, et al. LUME-Meso: design and rationale of the phase III part of a placebo-controlled study of nintedanib and pemetrexed/cisplatin followed by maintenance nintedanib in patients with unresectable malignant pleural mesothelioma. Clin Lung Cancer. 2017;18(5):589–93.

    Article  CAS  PubMed  Google Scholar 

  60. Campbell NP, Kunnavakkam R, Leighl N, Vincent MD, Gandara DR, Koczywas M, et al. Cediranib in patients with malignant mesothelioma: a phase II trial of the University of Chicago Phase II Consortium. Lung Cancer. 2012;78(1):76–80.

    Article  PubMed  Google Scholar 

  61. Tsao AS, Moon J, Wistuba II, Vogelzang NJ, Kalemkerian GP, Redman MW, et al. Phase I trial of cediranib in combination with cisplatin and pemetrexed in chemonaive patients with unresectable malignant pleural mesothelioma (SWOG S0905). J Thorac Oncol. 2017;12(8):1299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tsao AS, Miao J, Wistuba II, Vogelzang NJ, Heymach JV, Fossella FV, et al. Phase II trial of cediranib in combination with cisplatin and pemetrexed in chemotherapy-naïve patients with unresectable malignant pleural mesothelioma (SWOG S0905). J Clin Oncol. 2019;37(28):2537–47. https://doi.org/10.1200/JCO.19.00269.

  63. Parikh K, Mandrekar SJ, Allen-Ziegler K, Esplin B, Tan AD, Marchello B, et al. A phase II study of pazopanib in patients with malignant pleural mesothelioma: NCCTG N0623 (Alliance). Oncologist. 2020;25(6):523–31.

    Article  CAS  PubMed  Google Scholar 

  64. Manegold C, Dingemans AC, Gray JE, Nakagawa K, Nicolson M, Peters S, et al. The Potential of Combined Immunotherapy and Antiangiogenesis for the Synergistic Treatment of Advanced NSCLC. J Thorac Oncol. 2017;12(2):194–207. https://doi.org/10.1016/j.jtho.2016.10.003.

  65. Scheuermann J, de Ayala Alonso A, Oktaba K, et al. Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature. 2010;465:243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Srinivasan G, Sidhu GS, Williamson EA, et al. Synthetic lethality in malignant pleural mesothelioma with PARP1 inhibition. Cancer Chemother Pharmacol. 2017;80(4):861–7. https://doi.org/10.1007/s00280-017-3401-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Panou V, Gadiraju M, Wolin A, et al. Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol. 2018;36(28):2863–71. https://doi.org/10.1200/JCO.2018.78.5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hassan R, Morrow B, Thomas A, et al. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy. Proc Natl Acad Sci U S A. 2019;116(18):9008–13. https://doi.org/10.1073/pnas.1821510116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rusch A, Ziltener G, Nackaerts K, Weder W, Stahel RA, Felley-Bosco E. Prevalence of BRCA-1 associated protein 1 germline mutation in sporadic malignant pleural mesothelioma cases. Lung Cancer. 2015;87(1):77–9. https://doi.org/10.1016/j.lungcan.2014.10.017.

    Article  PubMed  Google Scholar 

  70. Fennell DA, Darlison L, Wells-Jordan P, Richards CJ, Gaba A, Poile C, et al. MiST1: a phase IIa trial of rucaparib in patients harboring BAP1/BRCA1 deficient relapsed malignant mesothelioma. J Clin Oncol. 2020;38(15S):9057.

    Article  Google Scholar 

  71. Hassan R, Mian I, Wagner C, Mallory Y, Agra M, Padiernos E, et al. Phase II study of olaparib in malignant mesothelioma (MM) to correlate efficacy with germline and somatic mutations inDNA repair genes. J Clin Oncol. 2020;38(15S):9054.

    Article  Google Scholar 

  72. Dudnik E, Bar J, Moore A, Gottfried T, Moskovitz M, Dudnik J, et al. BAP1-altered malignant pleural mesothelioma: outcomes with chemotherapy, immune check-point inhibitors and poly(ADP-Ribose) polymerase inhibitors. Front Oncol. 11:603223. https://doi.org/10.3389/fonc.2021.603223.

  73. Kemp CD, Rao M, Xi S, et al. Polycomb repressor complex-2 is a novel target for mesothelioma therapy. Clin Cancer Res. 2012;18(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  74. Zauderer MG, Szlosarek P, Le Moulec S, et al. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation. J Clin Oncol. 2018;36(15_suppl):8515.

    Article  Google Scholar 

  75. Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010;126:2762–72. https://doi.org/10.1002/ijc.25202.

    Article  CAS  PubMed  Google Scholar 

  76. Beddowes E, Spicer J, Chan PY, Khadeir R, Corbacho JG, Repana D, et al. Phase 1 dose-escalation study of pegylated arginine deiminase, cisplatin, and pemetrexed in patients with argininosuccinate synthetase 1 deficient thoracic cancers. J Clin Oncol. 2017;35:1778–85. https://doi.org/10.1200/JCO.2016.71.3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cooper J, Xu Q, Zhou L, Pavlovic M, Ojeda V, Moulick K, et al. Combined inhibition of NEDD8-activating enzyme and mTOR suppresses NF2 lossdriven tumorigenesis. Mol Cancer Ther. 2017;16(8):1693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M, et al. A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumours. Ann Oncol. 2016;27:2268–74. https://doi.org/10.1093/annonc/mdw427.

    Article  CAS  PubMed  Google Scholar 

  79. Fennell DA, Baas P, Taylor P, Nowak A, Gilligan D, Nakano T, et al. Maintenance defactinib versus placebo after first-line chemotherapy in patients with merlin-stratified pleural mesothelioma: COMMAND - a double blind, randomized, phase II study. JCO. 2019;37:790–8. https://doi.org/10.1200/JCO.2018.79.0543.

    Article  CAS  Google Scholar 

  80. Cooper J, Xu Q, Zhou L, Pavlovic M, Ojeda V, Moulick K, et al. Combined inhibition of NEDD8- activating enzyme and mTOR suppresses NF2 loss driven tumorigenesis. Mol Cancer Ther. 2017;16(8):1693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guo G, Chmielecki J, Goparaju C, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75(2):264–9. https://doi.org/10.1158/0008-5472.CAN-14-1008.

    Article  CAS  PubMed  Google Scholar 

  82. Bott M, Brevet M, Taylor BS, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43(7):668–72. https://doi.org/10.1038/ng.855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kato S, Tomson BN, Buys TPH, Elkin SK, Carter JL, Kurzrock R. Genomic landscape of malignant mesotheliomas. Mol Cancer Ther. 2016;15:2498–507.

    Article  CAS  PubMed  Google Scholar 

  84. Ciomei M, Scaburri A. CDK inhibitor for the treatment of mesothelioma. 2009. US20110224222A1

  85. Peguero JA, O'Neil BH, Sohal D, Bauer TM, Subbiah V, Kelly K, et al. Genomic mutation profiling (GMP) and clinical outcome in patients (pts) treated with ribociclib (CDK4/6 inhibitor) in the Signature program. J Clin Oncol. 2016;34(15_suppl):2528.

  86. Hassan R, Blumenschein GR Jr, Moore KN, Santin AD, Kindler HL, Nemunaitis JJ, et al. First-in-Human, Multicenter, Phase I dose-escalation and expansion study of anti-mesothelin antibody-drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J Clin Oncol. 2020;38(16):1824–35. https://doi.org/10.1200/JCO.19.02085.

  87. Hassan R, Jennens R, Van Meerbeeck JP, Nemunaitis JJ, Blumenschein GR, Fennell DA, et al. A pivotal randomized phase II study of anetumab ravtansine or vinorelbine in patients with advanced or metastatic pleural mesothelioma after progression on platinum/pemetrexed-based chemotherapy (NCT02610140). J Clin Oncol. 2016;34:TPS8576. https://doi.org/10.1200/jco.2016.34.15_suppl.tps8576.

    Article  Google Scholar 

  88. Clarke J, Chu S-C, Siu LL, Machiels J-P, Markman B, Heinhuis K, et al. BMS-986148, an anti-mesothelin antibody-drug conjugate (ADC), alone or in combination with nivolumab demonstrates clinical activity in patients with select advanced solid tumors. Mol Cancer Ther. 2019;18(12 Supplement):B057. https://doi.org/10.1158/1535-7163.TARG-19-B057.

  89. Hassan R, Bullock S, Premkumar A, et al. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res. 2007;13:5144–9.

    Article  CAS  PubMed  Google Scholar 

  90. Hassan R, Miller AC, Sharon E, et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci Transl Med. 2013;5:208ra147.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hassan R, Sharon E, Thomas A, Zhang J, Ling A, Miettinen M, et al. Phase 1 study of the antimesothelin immunotoxin SS1P in combination with pemetrexed and cisplatin for front-line therapy of pleural mesothelioma and correlation of tumor response with serum mesothelin, megakaryocyte potentiating factor, and cancer antigen 125. Cancer. 2014;120(21):3311–9. https://doi.org/10.1002/cncr.28875.

  92. Hassan R, Alewine C, Mian I, Spreafico A, Siu LL, Gomez-Roca C, et al. Phase 1 study of the immunotoxin LMB-100 in patients with mesothelioma and other solid tumors expressing mesothelin. Cancer. 2020;126(22):4936–47. https://doi.org/10.1002/cncr.33145.

  93. Dowlati A, Dabir S, Kresak A, Yang M, Wildey G. Use of CD30 expression in human malignant mesothelioma as a novel therapeutic target. J Clin Oncol. 2013;31(15S):e18526.

    Article  Google Scholar 

  94. Jalal SI, Einhorn L, Shapiro GI, Hilton J, Wheler J, Dowlati A, et al. Brentuximab vedotin in patients with CD30+ mesothelioma: mesothelioma, thymic malignancies, and other thoracic malignancies. Int J Radiat Oncol Biol Phys. 2014;90(5):S8.

    Article  Google Scholar 

  95. Sharman JP, Wheler JJ, Einhorn L, Dowlati A, Shapiro GI, Hilton J, et al. A phase 2, open-label study of brentuximab vedotin in patients with CD30- expressing solid tumors. Investig New Drugs. 2019;37(4):738–47.

    Article  CAS  Google Scholar 

  96. Sterman DH, Haas A, Moon E, Recio A, Schwed D, Vachani A, et al. A trial of intrapleural adenoviral-mediated Interferon-a2b gene transfer for malignant pleural mesothelioma. Am J Respir Crit Care Med. 2011;184:1395–9. https://doi.org/10.1164/rccm.201103-0554CR.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Reid G. Pel Me, Kirschner MB, Cheng YY, Mugridge N, Weiss J, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24:3128–35. https://doi.org/10.1093/annonc/mdt412.

    Article  CAS  PubMed  Google Scholar 

  98. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18:1386–96. https://doi.org/10.1016/S1470-2045(17)30621-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Dudnik MD.

Ethics declarations

Conflict of Interest

Elizabeth Dudnik has received research funding from AstraZeneca, and has received personal fees for lectures, consulting or advisory services from Roche, Boehringer Ingelheim, AstraZeneca, Pfizer, MSD, Bristol-Myers Squibb, Novartis, Takeda, and Sanofi.

Daniel Reinhorn declares that he has no conflict of interest.

Liran Holtzman declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnik, E., Reinhorn, D. & Holtzman, L. Novel and Promising Systemic Treatment Approaches in Mesothelioma. Curr. Treat. Options in Oncol. 22, 89 (2021). https://doi.org/10.1007/s11864-021-00883-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00883-8

Keywords

Navigation