Skip to main content
Log in

Duality theorems for current groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The classical Peter—Weyl theorem describes the structure of the space of functions on a semi-simple algebraic group. On the level of characters (in type A) this boils down to the Cauchy identity for the products of Schur polynomials. We formulate and prove an analogue of the Peter—Weyl theorem for current groups. In particular, in type A the corresponding characters identity is governed by the Cauchy identity for the products of q-Whittaker functions. We also formulate and prove a version of the Schur—Weyl theorem for current groups, which can be seen as a specialization of a theorem due to Drinfeld and Chari—Pressley. The link between the Peter—Weyl and Schur—Weyl theorems is provided by the (current version of) Howe duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel, Linear Algebraic Groups, W. A. Benjamin, New York—Amsterdam, 1969.

    MATH  Google Scholar 

  2. M. Bennett, A. Berenstein, V. Chari, A. Khoroshkin and S. Loktev, Macdonald polynomials and BGG reciprocity for current algebras, Selecta Mathematica 20 (2014), 585–607.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Borodin and I. Corwin, Macdonald processes, Probability Theory and Related Fields 158 (2014), 225–400.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bennett and V. Chari, Character formulae and a realization of tilting modules for \({\mathfrak{sl}_2}[t]\), Journal of Algebra 441 (2015), 216–242.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Braverman and M. Finkelberg, Weyl modules and q-Whittaker functions, Mathematische Annalen 359 (2014), 45–59.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Braverman and M. Finkelberg, Twisted zastava and q-Whittaker functions, Journal of the London Mathematical Society 96 (2017), 309–325.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bennet and R. Jenkins, On some families of modules for the current algebra, Algebras and Representation Theory 20 (2017), 197–208.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Brundan, A. Kleshchev and P. J. McNamara, Homological properties of finite-type Khovanov—Lauda—Rouquier algebras, Duke Mathematical Journal 163 (2014), 1353–1404.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Beck and H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Mathematical Journal 123 (2004), 335–402.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Borodin and L. Petrov, Integrable probability: From representation theory to Macdonald processes, Probability Surveys 11 (2014), 1–58.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Borodin and M. Wheeler, Spin q-Whittaker polynomials, Advances in Mathematics 376 (2021), Article no. 107449.

  12. I. Cherednik, Whittaker limits of difference spherical functions, International Mathematics Research Notices 20 (2009), 3793–3842.

    MathSciNet  MATH  Google Scholar 

  13. V. Chari, G. Fourier and T. Khandai, A categorical approach to Weyl modules, Transformation Groups 15 (2010), 517–549.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Chari and B. Ion, BGG reciprocity for current algebras, Compositio Mathematica 151 (2015), 1265–1287.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Chari and S. Loktev, Weyl, Demazure and fusion modules for the current algebra of \({\mathfrak{sl}_{r + 1}}\), Advances in Mathematics 207 (2006), 928–960.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Chari and S. Loktev, An application of global Weyl modules of \({\mathfrak{sl}_{n + 1}}[t]\) to invariant theory, Journal of Algebra 349 (2012), 317–328.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Chari and A. Pressley, Quantum affine algebras and affine Hecke algebras, Pacific Journal of Mathematics 174 (1996), 295–326.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Chari and A. Pressley, Weyl modules for classical and quantum affine algebras, Representation Theory 5 (2001), 191–223.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest weight categories, Journal für die reine und angewandte Mathematik 391 (1988), 85–99.

    MathSciNet  MATH  Google Scholar 

  20. V. Drinfeld, Degenerate affine Hecke algebras and Yangians, Functional Analysis and its Applications 20 (1986), 62–64.

    MathSciNet  Google Scholar 

  21. P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Translations Series 2, Vol. 194, American Mathematical Society, Providence, RI, 1999, pp. 9–26.

    Google Scholar 

  22. W. Fulton, Young Tableaux, London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  23. G. Fourier and P. Littelmann, Tensor product structure of affine Demazure modules and limit constructions, Nagoya Mathematical Journal 182 (2006), 171–198.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Fourier and P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Advances in Mathematics 211 (2007), 566–593.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Feigin and I. Makedonskyi, Semi—infinite Plücker relations and Weyl modules, International Mathematics Research Notices 14 (2020), 4357–4394.

    Article  MATH  Google Scholar 

  26. E. Feigin, I. Makedonskyi and D. Orr, Generalized Weyl modules and nonsymmetric q-Whittaker functions, Advances in Mathematics 330 (2018), 997–1033.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \({\mathfrak{gl}_{l + 1}} - Whittaker\) functions. I, II, Communications in Mathematical Physics 294 (2010), 97–119, 121–143.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Gerasimov, D. Lebedev and S. Oblezin, On q-deformed \({\mathfrak{gl}_{l + 1}} - Whittaker\) functions. III, Letters in Mathematical Physics 97 (2011), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Gerasimov, D. Lebedev and S. Oblezin, On a classical limit of q-deformed Whittaker functions, Letters in Mathematical Physics 100 (2012), 279–290.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Goodman and N. Wallach, Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, Vol. 255, Springer Dordrecht, 2009.

    Book  MATH  Google Scholar 

  31. R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, in The Schur Lectures (1992) (Tel Aviv), Israel Mathematical Conference Proceedings, Vol. 8, Bar-Ilan University, Ramat Gan, 1995, pp. 1–182.

    Google Scholar 

  32. B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Mathematical Journal 116 (2003), 299–318.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Kato, An algebraic study of extension algebras, American Journal of Mathematics 139 (2017), 567–615.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Khoroshkin, Highest weight categories and Macdonald polynomials, https://arxiv.org/abs/1312.7053.

  35. A. Kleshchev, Affine highest weight categories and affine quasihereditary algebras, Proceedings of the London Mathematical Society 110 (2015), 841–882.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, Vol. 140, Birkhäuser, Boston, MA, 2002.

    MATH  Google Scholar 

  37. S. Kumar, Kac—Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204. Birkhäuser, Boston, MA, 2002.

    Book  MATH  Google Scholar 

  38. S. Kumar, Conformal Blocks, Generalized Theta Functions and Verlinde Formula, New Mathematical Monographs, Vol. 42, Cambridge University Press, Cambridge, 2022.

    MATH  Google Scholar 

  39. I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, The Clarendon press, Oxford University press, New York, 1995.

    MATH  Google Scholar 

  40. K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Science reports of the Tokyo Kyoiku Daigaku. Section A 6 (1958), 83–142.

    MathSciNet  MATH  Google Scholar 

  41. K. Naoi, Weyl modules, Demazure modules and finite crystals for non-simply laced type, Advances in Mathematics 229 (2012), 875–934.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Okounkov, Infinite wedge and random partitions, Selecta Mathematica 7 (2001), 57–81.

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Oort, Algebraic group schemes in characteristic zero are reduced, Inventiones Mathematicae 2 (1966), 79–80.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Okounkov and N. Reshetikhin, Correlation function of Schur process with application tolocal geometry of a random 3-dimensional Young diagram, Journal of the American Mathematical Society 16 (2003), 581–603.

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Peter and H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Mathematische Annalen 97 (1927), 737–755.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Sanderson, On the Connection between Macdonald polynomials and Demazure characters, Journal of Algebraic Combinatorics 11 (2000), 269–275.

    Article  MathSciNet  MATH  Google Scholar 

  47. I. Schur, Über die rationalen Darstellungen der allgemeinen linearen Gruppe, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse 1 (1927), 58–75.

    MATH  Google Scholar 

  48. P. Tauvel and R. W. T. Yu, Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics, Springer, Berlin, 2005.

    Book  MATH  Google Scholar 

  49. H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, NJ, 1939

    MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Alexei Borodin, Alexander Braverman, Boris Feigin, Michael Finkelberg, Ryo Fujita, Syu Kato and Shrawan Kumar for useful discussions and correspondence. The research of E. F. was supported by the grant RSF 19-11-00056. The study was partially supported by the HSE University Basic Research Program. A. Kh. is a Young Russian Mathematics award winner and would like to thank its sponsors and jury. The work of Ie. M. was supported by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Feigin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feigin, E., Khoroshkin, A. & Makedonskyi, I. Duality theorems for current groups. Isr. J. Math. 248, 441–479 (2022). https://doi.org/10.1007/s11856-022-2306-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2306-6

Navigation