Skip to main content
Log in

Periods and factors of weak model sets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

There is a renewed interest in weak model sets due to their connection to \(\mathcal{B}\) -free systems [10], which emerged from Sarnak’s program on the M¨obius disjointness conjecture. Here we continue our recent investigation [22] of the extended hull \(\mathcal{M}^G_W\), a dynamical system naturally associated to a weak model set in an abelian group G with relatively compact window W. For windows having a nowhere dense boundary (this includes compact windows), we identify the maximal equicontinuous factor of \(\mathcal{M}^G_W\) and give a sufficient condition when \(\mathcal{M}^G_W\) is an almost 1–1 extension of its maximal equicontinuous factor. If the window is measurable with positive Haar measure and is almost compact, then the system \(\mathcal{M}^G_W\) equipped with its Mirsky measure is isomorphic to its Kronecker factor. For general nontrivial ergodic probability measures on \(\mathcal{M}^G_W\), we provide a kind of lower bound for the Kronecker factor. All relevant factor systems are natural G-actions on quotient subgroups of the torus underlying the weak model set. These are obtained by factoring out suitable window periods. Our results are specialised to the usual hull of the weak model set, and they are also interpreted for \(\mathcal{B}\) -free systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.–P. Aubin and H. Frankowska, Set–Valued Analysis, Systems & Control: Foundations & Applications, Vol. 2, Birkhäuser Boston, Boston, MA, 1990.

    MATH  Google Scholar 

  2. M. Baake and U. Grimm, Aperiodic Order. Vol. 1, Encyclopedia of Mathematics and its Applications, Vol. 149, Cambridge University Press, Cambridge, 2013.

    Book  MATH  Google Scholar 

  3. M. Baake, J. Hermisson and P. A. B. Pleasants, The torus parametrization of quasiperiodic LI–classes, Journal of Physics. A. Mathematical and General 30 (1997), 3029–3056.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Baake and C. Huck, Ergodic properties of visible lattice points, Proceedings of the Steklov Institute of Mathematics 288 (2015), 184–208.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Baake, C. Huck and N. Strungaru, On weak model sets of extremal density, Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 28 (2017), 3–31.

    MathSciNet  MATH  Google Scholar 

  6. M. Baake, T. Jäger and D. Lenz, Toeplitz flows and model sets, Bulletin of the London Mathematical Society 48 (2016), 691–698.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Baake and D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory and Dynamical Systems 24 (2004), 1867–1893.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Baake, D. Lenz and R. V. Moody, Characterization of model sets by dynamical systems, Ergodic Theory Dynamical Systems 27 (2007), 341–382.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Baake, R. V. Moody and P. A. B. Pleasants, Diffraction from visible lattice points and kth power free integers, Discrete Mathematics 221 (2000), 3–42.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dymek, S. Kasjan, J. Kulaga–Przymus and M. Lemańczyk, B–free sets and dynamics, Transactions of the American Mathematical Society 370 (2018), 5425–5489.

    Article  Google Scholar 

  11. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer, Berlin–New York, 1977.

    Book  MATH  Google Scholar 

  12. M. Einsiedler and T. Ward, Ergodic Theory with a View towards Number Theory, volume 259 of Graduate Texts in Mathematics, Vol. 259, Springer, London, 2011.

    MATH  Google Scholar 

  13. A. Forrest, J. Hunton and J. Kellendonk, Topological invariants for projection method patterns, Memoirs of the American Mathematical Society 159 (2002).

    Google Scholar 

  14. A. Hof, On diffraction by aperiodic structures, Communications in Mathematical Physics 169 (1995), 25–43.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Huck and C. Richard, On pattern entropy of weak model sets, Discrete & Computational Geometry 54 (2015), 741–757.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Husain, Introduction to Topological Groups, W. B. Saunders, Philadelphia, PA–London, 1966.

    MATH  Google Scholar 

  17. T. Jäger, D. Lenz and C. Oertel, Model sets with positive entropy in Euclidean cut and project schemes, Annales Scientifiques de l’École Normale Supérieure, to appear.

  18. O. Kallenberg, Foundations of Modern Probability, Probability and its Applications (New York), Springer, New York, 2002.

    Book  MATH  Google Scholar 

  19. S. Kasjan, G. Keller, and M. Lemańczyk, Dynamics of B–free sets: a view through the window, International Mathematics Research Notices, 10.1093/imrn/rnx196

  20. G. Keller, Tautness of sets of multiples and applications to B–free dynamics, Studia Mathematica, to appear, https://doi.org/arxiv.org/abs/1802.08309.

  21. G. Keller, Maximal equicontinuous generic factors and model sets, preprint, https://doi.org/arxiv.org/abs/1610.03998v1.

  22. G. Keller and C. Richard, Dynamics on the graph of the torus parametrisation, Ergodic Theory and Dynamical Systems 38 (2018), 1048–1085.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Lenz, Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks, Communications in Mathematical Physics 287 (2009), 225–258.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Lenz and C. Richard, Pure point diffraction and cut and project schemes for measures: The smooth case, Mathematische Zeitschrift 256 (2007), 347–378.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Lenz and N. Strungaru, Pure point spectrum for measure dynamical systems on locally compact abelian groups, Journal de Mathématiques Pures et Appliquées 92 (2009), 323–341.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Meyer, Nombres de Pisot, nombres de Salem et analyse harmonique, Lecture Notes in Mathematics, Vol. 117, Springer, Berlin–New York, 1970.

    MATH  Google Scholar 

  27. Y. Meyer, Algebraic Numbers and Harmonic Analysis, North–Holland Mathematical Library, Vo. 2, North–Holland, Amsterdam, 1972.

    MATH  Google Scholar 

  28. R. V. Moody, Model sets: a survey, in From Quasicrystals to More Complex Systems, Centre de Physique des Houches, Vol. 13 Springer, Berlin–Heidelberg, 2000, pp. 145–166.

    Google Scholar 

  29. R. V. Moody, Uniform distribution in model sets, Canadian Mathematical Bulletin 45 (2002), 123–130.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, Vol. 1794, Springer, Berlin, 2002.

    MATH  Google Scholar 

  31. C. Richard and N. Strungaru, Pure point diffraction and Poisson summation, Annales Henri Poincaré 18 (2017), 3903–3931.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. A. Robinson, Jr., A Halmos–von Neumann theorem for model sets, and almost automorphic dynamical systems, in Dynamics, Ergodic Theory, and Geometry, Mathematical Sciences Research Institute Publications, Vol. 54, Cambridge University Press, Cambridge, 2007, pp. 243–272.

    Book  MATH  Google Scholar 

  33. P. Sarnak, Three lectures on the Möbius Function: Randomness and Dynamics, https://doi.org/publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf.

  34. M. Schlottmann, Generalized model sets and dynamical systems, in Directions in Mathematical Quasicrystals, CRM Monograph Series, Vol. 13, American Mathematical Society, Providence, RI, 2000, pp. 143–159.

    Google Scholar 

  35. J.–P. Schreiber, Sur la notion de modèles dans les groupes abéliens localement compacts, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 272 (1971), A30–A32.

    Google Scholar 

  36. J.–P. Schreiber, Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts, Bulletin de la Société Mathématique de France 101 (1973), 297–332.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Keller.

Additional information

These notes profited enormously from the stimulating research atmosphere at the workshop “Combining Aperiodic Order with Structural Disorder” at the Lorentz Center, Leiden, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, G., Richard, C. Periods and factors of weak model sets. Isr. J. Math. 229, 85–132 (2019). https://doi.org/10.1007/s11856-018-1788-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1788-8

Navigation