Skip to main content
Log in

Three-term polynomial progressions in subsets of finite fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Bourgain and Chang recently showed that any subset of \(\mathbb{F}_p\) of density ≫p−1/15 contains a nontrivial progression x, x + y, x + y2. We answer a question of theirs by proving that if P1, P2 ∈ ℤ[y] are linearly independent and satisfy P1(0) = P2(0) = 0, then any subset of \(\mathbb{F}_p\) of density ≫P1,P2p−1/24 contains a nontrivial polynomial progression x, x + P1(y), x + P2(y).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Balog, J. Pelikán, J. Pintz and E. Szemerédi, Difference sets without κth powers, Acta Mathematica Hungarica 65 (1994), 165–187.

    Article  MathSciNet  Google Scholar 

  2. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemer édi’s theorems, Journal of the American Mathematical Society 9 (1996), 725–753.

    Article  MathSciNet  Google Scholar 

  3. J. Bourgain and M.-C. Chang, Nonlinear Roth type theorems in finite fields, Israel Journal of Mathematics 221 (2017), 853–867.

    Article  MathSciNet  Google Scholar 

  4. B. Bukh and J. Tsimerman, Sum-product estimates for rational functions, Proceedings of the London Mathematical Society 104 (2012), 1–26.

    Article  MathSciNet  Google Scholar 

  5. D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, Springer, New York, 2007.

    Google Scholar 

  6. W. T. Gowers, A new proof of Szemerédi’s theorem, Geometric and Functional Analysis 11 (2001), 465–588.

    Article  MathSciNet  Google Scholar 

  7. D. Hart, A. Iosevich and J. Solymosi, Sum-product estimates in finite fields via Kloosterman sums, International Mathematics Research Notices (2007), no. 5, Art. ID rnm007, 14.

    Google Scholar 

  8. D. Hart, L. Li and C.-Y. Shen, Fourier analysis and expanding phenomena in finite fields, Proceedings of the American Mathematical Society 141 (2013), 461–473.

    Article  MathSciNet  Google Scholar 

  9. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York–Heidelberg, 1977.

    Book  Google Scholar 

  10. G. Kemper, A course in Commutative Algebra, Graduate Texts in Mathematics, Vol. 256, Springer, Heidelberg, 2011.

    Book  Google Scholar 

  11. E. Kowalski, Exponential sums over definable subsets of finite fields, Israel Journal of Mathematics 160 (2007), 219–251.

    Article  MathSciNet  Google Scholar 

  12. S. Lang and A. Weil, Number of points of varieties in finite fields, American Journal of Mathematics 76 (1954), 819–827.

    Article  MathSciNet  Google Scholar 

  13. J. Lucier, Intersective sets given by a polynomial, Acta Arithmetica 123 (2006), 57–95.

    Article  MathSciNet  Google Scholar 

  14. S. Prendiville, Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case, Discrete Analysis (2017), paper no. 5.

    Google Scholar 

  15. A. Sárközy, On difference sets of sequences of integers. I, Acta Mathematica Academiae Scientiarum Hungaricae 31 (1978), 125–149.

    Article  MathSciNet  Google Scholar 

  16. A. Sárközy, On difference sets of sequences of integers. III, Acta Mathematica Academiae Scientiarum Hungaricae 31 (1978), 355–386.

    Article  MathSciNet  Google Scholar 

  17. I. D. Shkredov, On monochromatic solutions of some nonlinear equations in Z/pZ, Matematicheskie Zametki 88 (2010), 625–634.

    Article  MathSciNet  Google Scholar 

  18. S. Slijepčević, A polynomial Sárközy–Furstenberg theorem with upper bounds, Acta Mathematica Hungarica 98 (2003), 111–128.

    Article  MathSciNet  Google Scholar 

  19. T. Tao, Expanding polynomials over finite fields of large characteristic, and a regularity lemma for definable sets, Contributions to Discrete Mathematics 10 (2015), 22–98.

    MathSciNet  MATH  Google Scholar 

  20. V. H. Vu, Sum-product estimates via directed expanders, Mathematical Research Letters 15 (2008), 375–388.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Peluse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peluse, S. Three-term polynomial progressions in subsets of finite fields. Isr. J. Math. 228, 379–405 (2018). https://doi.org/10.1007/s11856-018-1768-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1768-z

Navigation