Skip to main content
Log in

Random cutout sets with spatially inhomogeneous intensities

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the Hausdorff dimension of Poissonian cutout sets defined via inhomogeneous intensity measures on Q-regular metric spaces. Our main results explain the dependence of the dimension of the cutout sets on the multifractal structure of the average densities of the Q-regular measure. As a corollary, we obtain formulas for the Hausdorff dimension of such cutout sets in self-similar and self-conformal spaces using the multifractal decomposition of the average densities for the natural measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics, Vol. 294, Birkhäuser/Springer Basel AG, Basel, 2011.

    Book  MATH  Google Scholar 

  2. L. Barreira, Y. Cao and J. Wang, Multifractal analysis of asymptotically additive sequences, Journal of Statistical Physics 153 (2013), 888–910.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Bedford and A. M. Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Proceedings of the London Mathematical Society 64 (1992), 95–124.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Biermé and A. Estrade, Covering the whole space with Poisson random balls, ALEA Latin America Journal of Probability and Mathematical Statistics 9 (2012), 213–229.

    MathSciNet  MATH  Google Scholar 

  5. A. Dvoretzky, On covering a circle by randomly placed arcs, Proceedings of the National Academy of Sciences of the United States of America 42 (1956), 199–203.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. El Helou, Recouvrement du tore Tq par des ouverts aléatoires et dimension de Hausdorff de l’ensemble non recouvert, Publications Mathématiques d’Orsay 78, Vol. 9, Universit é de Paris-Sud, Département de Mathématique, Orsay, 1978.

    MATH  Google Scholar 

  7. K. J. Falconer, Wavelet transforms and order-two densities of fractals, Journal of Statistical Physics 67 (1992), 781–793.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997.

    MATH  Google Scholar 

  9. A.-H. Fan, Sur les dimensions de mesures, Studia Mathematica 111 (1994), 1–17.

    MathSciNet  MATH  Google Scholar 

  10. A.-H. Fan and J. Schmeling, Coverings of the circle driven by rotations, in Dynamical Systems from Number Theory to Probability. II, Mathematical Modelling in Physics, Engineering and Cognitive Science, Vol. 6, Växjö University Press, Växjö, 2003, pp. 7–15.

    Google Scholar 

  11. A.-H. Fan, J. Schmeling and S. Troubetzkoy, A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation, Proceedings of the London Mathematical Society 107 (2013), 1173–1219.

    Article  MathSciNet  MATH  Google Scholar 

  12. D.-J. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Communications in Mathematical Physics 297 (2010), 1–43.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. J. Fitzsimmons, B. Fristedt and L. A. Shepp, The set of real numbers left uncovered by random covering intervals, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 70 (1985), 175–189.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Hoffmann-Jørgensen, Coverings of metric spaces with randomly placed balls, Mathematica Scandinavica 32 (1973), 169–186.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Järvenpää, M. Järvenpää, H. Koivusalo, B. Li and V. Suomala, Hausdorff dimension of affine random covering sets in torus, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 50 (2014), 1371–1384.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Jonasson and J. E. Steif, Dynamical models for circle covering: Brownian motion and Poisson updating, Annals of Probability 36 (2008), 739–764.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-P. Kahane, Sur le recouvrement d’un cercle par des arcs disposés au hasard, Comptes Rendus Hebdomadaores des Séances de l’Académie des Sciences. Vie Académique 248 (1959), 184–186.

    MATH  Google Scholar 

  18. J.-P. Kahane, Some Random Series of Functions, Cambridge Studies in Advanced Mathematics, Vol. 5, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  19. J.-P. Kahane, Positive martingales and random measures, Chinese Annals of Mathematics. Series B 8 (1987), 1–12; A Chinese summary appears in Chinese Annals of Mathematics. Series A 8 (1987), 136.

    MathSciNet  MATH  Google Scholar 

  20. J.-P. Kahane, Recouvrements aléatoires et théorie du potentiel, Colloquium Mathematicum 60/61 (1990), 387–411.

    MATH  Google Scholar 

  21. J.-P. Kahane, Random coverings and multiplicative processes, in Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), Progress in Probability, Vol. 46, Birkhäuser, Basel, 2000, pp. 125–146.

    Chapter  Google Scholar 

  22. L. Liao and S. Seuret, Diophantine approximation by orbits of expanding Markov maps, Ergodic Theory and Dynamical Systems 33 (2013), 585–608.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. B. Mandelbrot, Renewal sets and random cutouts, Zeitschrift fürWahrscheinlichkeitstheorie und Verwandte Gebiete 22 (1972), 145–157.

    Article  MathSciNet  MATH  Google Scholar 

  24. [24] S Nacu and W. Werner, Random soups, carpets and fractal dimensions, Journal of the London Mathematical Society 83 (2011), 789–809.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Patzschke, Self-conformal multifractal measures, Advances in Applied Mathematics 19 (1997), 486–513.

    Article  MathSciNet  MATH  Google Scholar 

  26. Ya. B. Pesin and B. S. Pitskel, Topological pressure and the variational principle for noncompact sets, Funktsional’nyi Analiz i ego Prilozheniya 18 (1984), 50–63, 96.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos 7 (1997), 89–106.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Preiss, Geometry of measures in Rn: distribution, rectifiability, and densities, Annals of Mathematics 125 (1987), 537–643.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. M. Rivero, On random sets connected to the partial records of Poisson point process, Journal of Theoretical Probability 16 (2003), 277–307.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, Vol. 5, Addison-Wesley Publishing Co., Reading, MA, 1978.

    Google Scholar 

  31. L. A. Shepp, Covering the circle with random arcs, Israel Journal of Mathematics 11 (1972), 328–345.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Shmerkin and V. Suomala, Spatially independent martingales, intersections, and applications, Memoirs of the American Mathematical Society, to appear, available at http://http://arxiv.org/abs/1409.6707.

  33. J. Thacker, Properties of Brownian and random walk loop soups, Ph.D. thesis, Cornell University, 2006.

    Google Scholar 

  34. M. Zähle, Local dimensions, average densities and self-conformal measures, Periodica Mathematica Hungarica 37 (1998), 217–225.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Zähle, The average density of self-conformal measures, Journal of the London Mathematical Society 63 (2001), 721–734.

    Article  MathSciNet  MATH  Google Scholar 

  36. U. Zähle, Random fractals generated by random cutouts, Mathematische Nachrichten 116 (1984), 27–52.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Suomala.

Additional information

V. S. and M. W. acknowledge financial support from the Academy of Finland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojala, T., Suomala, V. & Wu, M. Random cutout sets with spatially inhomogeneous intensities. Isr. J. Math. 220, 899–925 (2017). https://doi.org/10.1007/s11856-017-1524-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1524-9

Navigation