Skip to main content
Log in

Optimal transportation on non-compact manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we show how to obtain for non-compact manifolds the results that have already been done for Monge Transport Problem for costs coming from Tonelli Lagrangians on compact manifolds. In particular, the already known results for a cost of the type d r, r > 1, where d is the Riemannian distance of a complete Riemannian manifold, hold without any curvature restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J. E. Marsden, Foundations of mechanics, second edition, revised and enlarged, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass, 1978.

    Google Scholar 

  2. L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics 1812, Springer-Verlag, Berlin/New York, 2003, pp. 1–52.

    Google Scholar 

  3. L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, Journal of Mathematical Analysis and Applications 142 (1989), 301–316.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the Wasserstein space of probability measures, Lectures in Mathematics, ETH Zurich, Birkhäuser Verlag, Basel, 2005.

    Google Scholar 

  5. L. Ambrosio and A. Pratelli, Existence and stability results in the L 1 theory of optimal transportation, in Optimal Transportation and Applications, in Lecture Notes in Mathematics 1813, Springer-Verlag, Berlin/New York, 2003, pp. 123–160.

    Google Scholar 

  6. V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Manigfaltigkeiten, Journal für die Reine und Angewandte Mathematik 307 (1979), 309–324.

    Article  MathSciNet  Google Scholar 

  7. P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, Journal of the European Mathematical Society (JEMS) 9 (2007), 85–121.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Bernard and B. Buffoni, The Monge problem for supercritical Mañé potential on compact manifolds, Advances in Mathematics 207 (2006), 691–706.

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics 44 (1991), 375–417.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional variational problems, in Oxford Lecture Series in Mathematics and its Applications 15, Oxford University Press, New York, 1998.

    Google Scholar 

  11. L. Caffarelli, M. Feldman and R.J. McCann, Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. Journal of the American Mathematical Society 15 (2002), 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. A. Caffarelli and S. Salsa, Editors, Optimal transportation and applications, Lecture Notes in Mathematics 1813, Lectures from the C.I.M.E. Summer School held in Martina Franca, September 2–8, 2001, Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  13. P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications 58, Birkhäuser, Boston, 2004.

    Google Scholar 

  14. F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics 57, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.

    Google Scholar 

  15. F. H. Clarke, A Lipschitz regularity theorem, Ergodic Theory and Dynamical Systems 27 (2007), 1713–1718.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. H. Clarke and R.B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Transactions of the American Mathematical Society 289 (1985), 73–98.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. L. Cohn, Measure theory, Birkhäuser Boston, Mass, 1980.

    MATH  Google Scholar 

  18. L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, in Current Developments in Mathematics (R. Bott et al., eds.), International Press, Cambridge, 1997, pp. 26–78.

    Google Scholar 

  19. L. C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem, Memoirs of the American Mathematical Society 137, (1999).

  20. A. Fathi, Regularity of C 1 solutions of the Hamilton-Jacobi equation, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6 12 (2003), 479–516.

    MATH  MathSciNet  Google Scholar 

  21. A. Fathi, Weak KAM theorems in Lagrangian Dynamics, Book to appear.

  22. H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften 153, Springer-Verlag, New York Inc., New York, 1969.

    Google Scholar 

  23. M. Feldman and R. J. McCann, Monge’s transport problem on a Riemannian manifold, Transactions of the American Mathematical Society 354 (2002), 1667–1697.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Figalli, The Monge problem on non-compact manifolds, Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova 117 (2007), 147–166.

    MATH  MathSciNet  Google Scholar 

  25. J. N. Mather and G. Forni, Action minimizing orbits in Hamiltonian systems, Transition to chaos in classical and quantum mechanics, Montecatini Terme, 1991, in Lecture Notes in Mathematics 1589, Springer, Berlin, 1994, pp. 92–186.

    Google Scholar 

  26. W. Gangbo, The Monge mass transfer problem and its applications, in Monge Ampère equation: applications to geometry and optimization, Contemporary Mathematics 226, American Mathematical Society, Providence, RI, 1999, pp. 79–104.

    Google Scholar 

  27. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Mathematica 177 (1996), 113–161.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994.

    Google Scholar 

  29. L. V. Kantorovich, On the transfer of masses, Doklady Akademii Nauk SSSR 37 (1942), 227–229.

    Google Scholar 

  30. L. V. Kantorovich, On a problem of Monge. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 3 (1948), 225–226.

    Google Scholar 

  31. M. Knott and C. S. Smith, On the optimal mapping of distributions, Journal of Optimization Theory and Applications 43 (1984), 39–49.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), 457–467.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. McCann, Polar factorization of maps on Riemannian manifolds, Geometric and Functional Analysis 11 (2001), no. 3, 589–608.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Monge, Mémoire sur la Théorie des Déblais et des Remblais, Hist. de l’Acad. des Sciences de Paris (1781), 666–704.

  35. J. Moser, Selected chapters in the calculus of variations, in Lectures in Mathematics ETH Zürich, Lecture Notes by Oliver Knill, Birkhäuser Verlag, Basel, 2003.

    Google Scholar 

  36. S. T. Rachev and L. Rüschendorf, A characterization of random variables with minimum L 2-distance, Journal of Multivariate Analysis 32 (1990), 48–54. Corrigendum in Journal of Multivariate Analysis 34 (1990), 156.

    Article  MATH  MathSciNet  Google Scholar 

  37. S.T. Rachev and L. Rüschendorf, Mass transportation problems, Vol. I: Theory, Vol. II: Applications. in Probability and its Applications, Springer-Verlag, New York, 1998.

    Google Scholar 

  38. W. Schachermayer and J. Teichmann, Characterization of optimal Transport Plans for the Monge-Kantorovich-Problem, Proceedings of the American Mathematical Society, to appear.

  39. V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions, Proceedings of the Steklov Institute of Mathematics 141 (1979), 1–178.

    MathSciNet  Google Scholar 

  40. N. S. Trudinger and X. J. Wang, On the Monge mass transfer problem, Calculus of Variations and Partial Differential Equations 13 (2001), 19–31.

    Article  MATH  MathSciNet  Google Scholar 

  41. C. Villani, Topics in mass transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2004.

    Google Scholar 

  42. C. Villani, Optimal Transport, Old and New, Grundlehern der Mathematischen Wissenschaften, Vol. 338, Springer-Verlag, Berlin, 2009.

    Google Scholar 

  43. R. Vinter, Optimal control, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, A., Figalli, A. Optimal transportation on non-compact manifolds. Isr. J. Math. 175, 1–59 (2010). https://doi.org/10.1007/s11856-010-0001-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0001-5

Keywords

Navigation