Skip to main content
Log in

Degree two ergodic theorem for divergence-free stationary random fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove the ergodic theorem for surface integrals of divergence-free stationary random fields of ℝ3. Mean convergence in \( \mathbb{L}^p \) spaces takes place as soon as the field is \( \mathbb{L}^p \)-integrable. The condition of integrability for the pointwise convergence is expressed by a Lorentz norm. This theorem is an ergodic theorem for cocycles of degree 2, analogous to the ergodic theorem for cocycles of degree 1 proved in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Boivin and Y. Derriennic, The ergodic theorem for additive cocycles of ℤ d or ℝ d, Ergodic Theory and Dynamical Systems 11 (1991), 19–39.

    MATH  MathSciNet  Google Scholar 

  2. J. Depauw, Théorème ergodique ponctuel pour cocycle de degré deux, Comptes Rendus de l’Académie des Sciences, Paris 325, Séries I (1997), 87–90.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Depauw, Génération des cocycles de degré ≥ 2 d’une action mesurable stationnaire de ℤ d, Ergodic Theory and Dynamical Systems 22 (2002), 153–169.

    MATH  MathSciNet  Google Scholar 

  4. J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebra. I, Transactions of the American Mathematical Society 234 (1977), 289–324.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. A. Hunt, On L(p, q) spaces, Expositiones Mathematicae 12 (1966), 249–275.

    MATH  Google Scholar 

  6. V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  7. A. Katok and S. Katok, Higher cohomology for abelian groups of toral automorphisms, Ergodic Theory and Dynamical Systems 15 (1995), 569–592.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. W. Mackey, Ergodic Theory And Virtual Groups, Mathematische Annalen 166 (1966), 187–207.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Mac Lane, Homology, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band 114, Springer-Verlag, Berlin, 1963.

    Google Scholar 

  10. E. Stein, The differentiability of functions in ℝ n, Archiv für Mathematik 113 (1981), 383–385.

    Google Scholar 

  11. N. Wiener, The ergodic theorem, Duke Mathematical Journal 5 (1939), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depauw, J. Degree two ergodic theorem for divergence-free stationary random fields. Isr. J. Math. 157, 283–308 (2007). https://doi.org/10.1007/s11856-006-0012-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-006-0012-4

Keywords

Navigation