Skip to main content

Advertisement

Log in

Morphological Evolution Effect on the Performance of Spray Pyrolysis-Based Synthesis of Fluorapatite Thin Films for Bioimplant Applications

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To correlate fluorapatite thin films’ morphology to their stability and bioactivity for temporary bioimplant applications, fluorapatite is ultrasonically spray-deposited on different substrates using chemical precursors. Mechanical agitation in phosphate-buffered saline solution is used to investigate the stability of the films aided with X-ray diffraction and electron microscopy for films’ morphology and thickness. For bioactivity, the cell adhesion to the fluorapatite thin films is evaluated by growing HaCaT cells on the film surface. The films deposited on titanium are pure and polycrystalline. Agitation in solution leads to a thickness reduction of 18.3%, and 30.5% for the films deposited on alumina. However, the persistence of the films after agitation suggests partial degradability. The improved stability of fluorapatite on titanium is attributed to the layer plus island-like morphology that offers a reduced contact area with the surrounding solution compared with the island-like morphology of fluorapatite on alumina. These different morphologies can be understood in the context of a smaller lattice mismatch between the substrate and the film which results in the layer plus island-like morphology. HaCaT cell adhesion on Ti-fluorapatite film surfaces is better than the titanium reference and alumina-fluorapatite suggesting its bioactivity and the promise of spray-deposited FAP for orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Iafisco, R. Bosco, S.C.G. Leeuwenburgh, J.J.J.P. van den Beucken, J.A. Jansen, M. Prat, and N. Roveri, Adv. Eng. Mater. 14, B13 https://doi.org/10.1002/adem.201180062 (2012).

    Article  Google Scholar 

  2. K.A. Bhadang, and K.A. Gross, Biomaterials 25, 4935 https://doi.org/10.1016/j.biomaterials.2004.02.043 (2004).

    Article  Google Scholar 

  3. K. de Groot, J.G.C. Wolke, and J.A. Jansen, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 212, 137 https://doi.org/10.1243/0954411981533917 (1998).

    Article  Google Scholar 

  4. S.V. Dorozhkin, World J. Methodol. 2, 1 https://doi.org/10.5662/wjm.v2.i1.1 (2012).

    Article  Google Scholar 

  5. C.F. Dunne, B. Twomey, C. Kelly, J.C. Simpson, and K.T. Stanton, J. Mater. Sci.: Mater. Med. 26, 22 https://doi.org/10.1007/s10856-014-5347-5 (2015).

    Article  Google Scholar 

  6. D. Haverty, S.A.M. Tofail, K.T. Stanton, and J.B. McMonagle, Phys. Rev. B 71, 094103 https://doi.org/10.1103/PhysRevB.71.094103 (2005).

    Article  Google Scholar 

  7. S. Overgaard, M. Lind, K. Josephsen, A.B. Maunsbach, C. Bünger, and K. Søballe, J. Biomed. Mater. Res. 39, 141 (1998).

    Article  Google Scholar 

  8. L. Shi, Y. Bai, J. Su, W. Ma, and R.-L. Jia, Int. J. Appl. Ceram. Technol. 14, 1088 https://doi.org/10.1111/ijac.12712 (2017).

    Article  Google Scholar 

  9. H.O. Simila, N. Karpukhina, and R.G. Hill, Dent. Mater. 34, e1 https://doi.org/10.1016/j.dental.2017.10.005 (2018).

    Article  Google Scholar 

  10. B. Ranjkesh, J. Chevallier, H. Salehi, F. Cuisinier, F. Isidor, and H. Løvschall, Acta Biomater. Odontol. Scand. 2, 68 https://doi.org/10.1080/23337931.2016.1178583 (2016).

    Article  Google Scholar 

  11. Y. Huang, G. Song, X. Chang, Z. Wang, X. Zhang, S. Han, Z. Su, H. Yang, D. Yang, and X. Zhang, Int. J. Nanomed. 13, 2665 https://doi.org/10.2147/IJN.S162558 (2018).

    Article  Google Scholar 

  12. Y. Bai, Y. Bai, J. Gao, W. Ma, J. Su, and R. Jia, J. Alloys Compd. 688, 657 https://doi.org/10.1016/j.jallcom.2016.07.006 (2016).

    Article  Google Scholar 

  13. B.T. Bennett, J.P. Beck, K. Papangkorn, J.S. Colombo, K.N. Bachus, J. Agarwal, J.F. Shieh, and S. Jeyapalina, Mater. Sci. Eng. C 100, 665 https://doi.org/10.1016/j.msec.2019.03.025 (2019).

    Article  Google Scholar 

  14. C.J. Pendegrass, A.E. Goodship, and G.W. Blunn, Biomaterials 27, 4183 https://doi.org/10.1016/j.biomaterials.2006.03.041 (2006).

    Article  Google Scholar 

  15. D. Isackson, L.D. McGill, and K.N. Bachus, Med. Eng. Phys. 33, 418 https://doi.org/10.1016/j.medengphy.2010.11.007 (2011).

    Article  Google Scholar 

  16. V. Mooney, S.A. Schwartz, A.M. Roth, and M.J. Gorniowsky, Ann. Biomed. Eng. 5, 34 https://doi.org/10.1007/BF02409337 (1977).

    Article  Google Scholar 

  17. A. Alhilou, T. Do, L. Mizban, B.H. Clarkson, D.J. Wood, and M.G. Katsikogianni, ACS Omega 1, 264 https://doi.org/10.1021/acsomega.6b00080 (2016).

    Article  Google Scholar 

  18. N. Guha-Chowdhury, A.G. Clark, and C.H. Sissons, Oral Microbiol. Immunol. 12, 91 https://doi.org/10.1111/j.1399-302X.1997.tb00623.x (1997).

    Article  Google Scholar 

  19. R.E. Marquis, Can. J. Microbiol. 41, 955 https://doi.org/10.1139/m95-133 (1995).

    Article  Google Scholar 

  20. N. Iqbal, M.R.A. Kadir, N.H.B. Mahmood, S. Iqbal, D. Almasi, F. Naghizadeh, H.R. Balaji, and T. Kamarul, Ceram. Int. 41, 6470 https://doi.org/10.1016/j.ceramint.2015.01.086 (2015).

    Article  Google Scholar 

  21. S. Shadanbaz, and G.J. Dias, Acta Biomater. 8, 20 https://doi.org/10.1016/j.actbio.2011.10.016 (2012).

    Article  Google Scholar 

  22. K. Jamuna-Thevi, M.J. Suleiman, and S.N. Sabri, Macromol. Symp. 371, 101 https://doi.org/10.1002/masy.201600048 (2017).

    Article  Google Scholar 

  23. K. Jamuna-Thevi, N.M. Daud, M.R.A. Kadir, and H. Hermawan, Ceram. Int. 40, 1001 https://doi.org/10.1016/j.ceramint.2013.06.097 (2014).

    Article  Google Scholar 

  24. C. Lindahl, W. Xia, J. Lausmaa, and H. Engqvist, Biomed. Mater. 7, 045018 https://doi.org/10.1088/1748-6041/7/4/045018 (2012).

    Article  Google Scholar 

  25. N. Johari, M.H. Fathi, M.A. Golozar, E. Erfani, and A. Samadikuchaksaraei, J. Mater. Sci. Mater. Med. 23, 763 https://doi.org/10.1007/s10856-011-4528-8 (2012).

    Article  Google Scholar 

  26. Y. Huang, X. Zhang, H. Qiao, M. Hao, H. Zhang, Z. Xu, X. Zhang, X. Pang, and H. Lin, Ceram. Int. 42, 1903 https://doi.org/10.1016/j.ceramint.2015.09.160 (2016).

    Article  Google Scholar 

  27. V. Stanić, A.S. Radosavljević-Mihajlović, V. Živković-Radovanović, B. Nastasijević, M. Marinović-Cincović, J.P. Marković, and M.D. Budimir, Appl. Surf. Sci. 337, 72 https://doi.org/10.1016/j.apsusc.2015.02.065 (2015).

    Article  Google Scholar 

  28. C.-S. Chien, Y.-S. Ko, T.-Y. Kuo, T.-Y. Liao, H.-C. Lin, T.-M. Lee, and T.-F. Hong, J. Med. Biolo. Eng. 35, 357 https://doi.org/10.1007/s40846-015-0048-1 (2015).

    Article  Google Scholar 

  29. M. Ganjali, S. Mousavi, S. Nikzamir, P.B. Milan, and M. Mozafari, Mater. Technol. 37, 829 https://doi.org/10.1080/10667857.2021.1898716 (2022).

    Article  Google Scholar 

  30. C.S. Chien, Z.Y. Liao, T.F. Hong, T.Y. Kuo, C.H. Chang, M.L. Yeh, and T.M. Lee, J. Med. Biolo. Eng. 34, 109 https://doi.org/10.5405/jmbe.1379 (2014).

    Article  Google Scholar 

  31. J.K. Bibby, N.L. Bubb, D.J. Wood, and P.M. Mummery, J. Mater. Sci. Mater. Med. 16, 379 https://doi.org/10.1007/s10856-005-6975-6 (2005).

    Article  Google Scholar 

  32. H.F. Ghorbel, A. Guidara, Y. Danlos, J. Bouaziz, and C. Coddet, Mater. Lett. 185, 268 https://doi.org/10.1016/j.matlet.2016.08.034 (2016).

    Article  Google Scholar 

  33. H.F. Ghorbel, A. Guidara, Y. Danlos, J. Bouaziz, and C. Coddet, Mater. Sci. Eng. C 71, 1090 https://doi.org/10.1016/j.msec.2016.11.024 (2017).

    Article  Google Scholar 

  34. M.H. Fathi, E.M. Zahrani, and A. Zomorodian, Mater. Lett. 63, 1195 https://doi.org/10.1016/j.matlet.2009.02.040 (2009).

    Article  Google Scholar 

  35. O.A. Markelova, and S.Y. Pichkhidze, Glass Ceram. 77, 473 https://doi.org/10.1007/s10717-021-00335-7 (2021).

    Article  Google Scholar 

  36. J.L. Ong, L.A. Harris, L.C. Lucas, W.R. Lacefield, and D. Rigney, J. Am. Ceram. Soc. 74, 2301 https://doi.org/10.1111/j.1151-2916.1991.tb08301.x (1991).

    Article  Google Scholar 

  37. S. Loher, W.J. Stark, M. Maciejewski, A. Baiker, S.E. Pratsinis, D. Reichardt, F. Maspero, F. Krumeich, and D. Günther, Chem. Mater. 17, 36 https://doi.org/10.1021/cm048776c (2005).

    Article  Google Scholar 

  38. I. Denry, and J.A. Holloway, Dent. Mater. 30, 112 https://doi.org/10.1016/j.dental.2013.10.009 (2014).

    Article  Google Scholar 

  39. E. Ciliberto, and G. Spoto, Chem. Commun. https://doi.org/10.1039/A703318D (1997).

    Article  Google Scholar 

  40. K. Cheng, W. Weng, H. Qu, P. Du, G. Shen, G. Han, J. Yang, and J.M.F. Ferreira, J. Biomed. Mater. Res. Part B Appl. Biomater. 69B, 33 https://doi.org/10.1002/jbm.b.20027 (2004).

    Article  Google Scholar 

  41. L. Borkowski, A. Przekora, A. Belcarz, K. Palka, G. Jozefaciuk, T. Lübek, M. Jojczuk, A. Nogalski, and G. Ginalska, Mater. Sci. Eng. C 116, 111211 https://doi.org/10.1016/j.msec.2020.111211 (2020).

    Article  Google Scholar 

  42. J. Ballarre, and S.M. Ceré, J. Sol-Gel Sci. Technol. 102, 96 https://doi.org/10.1007/s10971-021-05658-z (2022).

    Article  Google Scholar 

  43. J.M. Ferreira, V. Rajendran, G. Simonelli, A.C.M. Silva, L.C.L. Santos, S. Mattedi, L.A.M. Pontes, I. Costa, J.L. Rossi, and M.A. Baker, Appl. Surf. Sci. 505, 144393 https://doi.org/10.1016/j.apsusc.2019.144393 (2020).

    Article  Google Scholar 

  44. H. Chen, Z. Tang, J. Liu, K. Sun, S.R. Chang, M.C. Peters, J.F. Mansfield, A. Czajka-Jakubowska, and B.H. Clarkson, Adv. Mater. 18, 1846 https://doi.org/10.1002/adma.200502401 (2006).

    Article  Google Scholar 

  45. R.T.A. Elghazel, J. Bouaziz, S. Charfi, H. Keskes, Scaffolds in tissue Eng. Mater., Technol. Clin. Appl., (IntechOpen, Croatia, 2017), pp 129–144.

  46. F.F. Feagin, Calc. Tissue Res. 8, 154–164 https://doi.org/10.1007/bf02010132 (1971).

    Article  Google Scholar 

  47. F.B. Ayed, J. Bouaziz, and K. Bouzouita, J. Eur. Ceram. Soc. 20, 1069 https://doi.org/10.1016/S0955-2219(99)00272-1 (2000).

    Article  Google Scholar 

  48. D. Veilleux, N. Barthelemy, J.-C. Trombe, and M. Verelst, J. Mater. Sci. 36, 2245 (2001).

    Article  Google Scholar 

  49. L.T. de Jonge, S.C.G. Leeuwenburgh, J.G.C. Wolke, and J.A. Jansen, Pharm. Res. 25, 2357 https://doi.org/10.1007/s11095-008-9617-0 (2008).

    Article  Google Scholar 

  50. J.-M. Choi, H.-E. Kim, and I.-S. Lee, Biomaterials 21, 469 https://doi.org/10.1016/S0142-9612(99)00186-6 (2000).

    Article  Google Scholar 

  51. Y. Hashimoto, M. Kawashima, R. Hatanaka, M. Kusunoki, H. Nishikawa, S. Hontsu, and M. Nakamura, J. Mater. Sci. Mater. Med. 18, 1457 https://doi.org/10.1007/s10856-006-0118-6 (2007).

    Article  Google Scholar 

  52. P. Cheang, and K.A. Khor, Biomaterials 17, 537 https://doi.org/10.1016/0142-9612(96)82729-3 (1996).

    Article  Google Scholar 

  53. L.G. Ellies, D.G.A. Nelson, and J.D.B. Featherstone, Biomaterials 13, 313 https://doi.org/10.1016/0142-9612(92)90055-S (1992).

    Article  Google Scholar 

  54. J.S. Cho, J.-C. Lee, and S.-H. Rhee, J. Biomed. Mater. Res. Part B Appl. Biomater. 104, 422 https://doi.org/10.1002/jbm.b.33406 (2016).

    Article  Google Scholar 

  55. M. Honda, Y. Kawanobe, K. Ishii, T. Konishi, M. Mizumoto, N. Kanzawa, M. Matsumoto, and M. Aizawa, Mater. Sci. Eng. C 33, 5008 https://doi.org/10.1016/j.msec.2013.08.026 (2013).

    Article  Google Scholar 

  56. Ceramic Materials: Science and Engineering, ed. C.B. Carter and M.G. Norton (Springer New York, New York, NY, 2007), pp 400–411.

  57. R. Azari, H.R. Rezaie, and A. Khavandi, Ceram. Int. 45, 17545 https://doi.org/10.1016/j.ceramint.2019.05.317 (2019).

    Article  Google Scholar 

  58. M. Chambard, O. Marsan, C. Charvillat, D. Grossin, P. Fort, C. Rey, F. Gitzhofer, and G. Bertrand, Surf. Coat. Technol. 371, 68 https://doi.org/10.1016/j.surfcoat.2019.01.027 (2019).

    Article  Google Scholar 

  59. S. Leeuwenburgh, J. Wolke, J. Schoonman, and J. Jansen, J. Biomed. Mater. Res. Part A 66A, 330 https://doi.org/10.1002/jbm.a.10590 (2003).

    Article  Google Scholar 

  60. L. Müller, E. Conforto, D. Caillard, and F.A. Müller, Biomol. Eng. 24, 462 https://doi.org/10.1016/j.bioeng.2007.07.011 (2007).

    Article  Google Scholar 

  61. P. Ducheyne, S. Radin, M. Heughebaert, and J.C. Heughebaert, Biomaterials 11, 244 https://doi.org/10.1016/0142-9612(90)90005-B (1990).

    Article  Google Scholar 

  62. G. Bonel, J.-C. Heughebaert, M. Heughebaert, J.L. Lacout, and A. Lebugle, Ann. NY Acad. Sci. 523, 115 (1988).

    Article  Google Scholar 

  63. S. Ban, and S. Maruno, J. Biomed. Mater. Res. 42, 387 (1998).

    Article  Google Scholar 

  64. G. Berger, U. Ploska, and G. Willmann, Key Eng. Mater. 192–195, 111 (2000).

    Article  Google Scholar 

  65. E. Park, R.A. Condrate, D.T. Hoelzer, and G.S. Fischman, J. Mater. Sci. Mater. Med. 9, 643 (1998).

    Article  Google Scholar 

  66. D. Zaouk, Y. Zaatar, A. Khoury, C. Llinares, J.P. Charles, and J. Bechara, Microelectron. Eng. 51–52, 627 (2000).

    Article  Google Scholar 

  67. A. Boyd, M. Akay, and B.J. Meenan, Surf. Interface Anal. 35, 188 https://doi.org/10.1002/sia.1512 (2003).

    Article  Google Scholar 

  68. H. Monma, J. Mater. Sci. 29, 949 https://doi.org/10.1007/BF00351415 (1994).

    Article  Google Scholar 

  69. T.K. Toivo and J.H. Mark, Aerosol processing of materials, (WILEY-VCH, New York, 1999), pp. 1,8,11–13,15,16,19–23,42,43,45–48,55,62–65,65,66,75–79,85–99,105,129–130,135,136,140,166,170,172,179–182,185–188,218,219,492,494,495,499, 500–504,506, 535,577, 602,603, 606–608, 610,654,655.

  70. S. Che, O. Sakurai, K. Shinozaki, and N. Mizutani, J. Aerosol Sci 29, 271 https://doi.org/10.1016/S0021-8502(97)10012-X (1998).

    Article  Google Scholar 

  71. J.M. Bian, X.M. Li, T.L. Chen, X.D. Gao, and W.D. Yu, Appl. Surf. Sci. 228, 297 https://doi.org/10.1016/j.apsusc.2004.01.020 (2004).

    Article  Google Scholar 

  72. X. Fu, G. Wu, S. Song, Z. Song, X. Duo, and C. Lin, Appl. Surf. Sci. 148, 223 https://doi.org/10.1016/S0169-4332(99)00126-9 (1999).

    Article  Google Scholar 

  73. O. Stryckmans, T. Segato, and P.H. Duvigneaud, Thin Solid Films 283, 17 https://doi.org/10.1016/0040-6090(95)08154-2 (1996).

    Article  Google Scholar 

  74. S.Y. Wang, Z.P. Qiao, W. Wang, and Y.T. Qian, J. Alloys Compd. 305, 121 https://doi.org/10.1016/S0925-8388(00)00748-9 (2000).

    Article  Google Scholar 

  75. S. Wang, W. Wang, J. Zuo, and Y. Qian, Mater. Chem. Phys. 68, 246 https://doi.org/10.1016/S0254-0584(00)00357-6 (2001).

    Article  Google Scholar 

  76. S.Y. Wang, W. Wang, Q.C. Liu, M. Zhang, and Y.T. Qian, Solid State Ion. 133, 211 https://doi.org/10.1016/S0167-2738(00)00762-1 (2000).

    Article  Google Scholar 

  77. D. Pavlopoulos, S. Al Khatiab, T.W. Button, and J.S. Abell, J. Phys. Conf. Ser. 97, 012098 (2008).

    Article  Google Scholar 

  78. J.L. Boone, T.P. Van Doren, and A.K. Berry, Thin Solid Films 87, 259 https://doi.org/10.1016/0040-6090(82)90362-5 (1982).

    Article  Google Scholar 

  79. V.M. Nikale, S.S. Shinde, C.H. Bhosale, and K.Y. Rajpure, J. Semicond. 32, 033001 https://doi.org/10.1088/1674-4926/32/3/033001 (2011).

    Article  Google Scholar 

  80. S. Al Khateeb, In Metallurgy and Materials (University of Birmingahm: Birmingham, 2009).

  81. D. Pavlopoulos, (University of Birmingham 2008).

  82. O. Paschos, P. Choi, H. Efstathiadis, and P. Haldar, Thin Solid Films 516, 3796 https://doi.org/10.1016/j.tsf.2007.06.123 (2008).

    Article  Google Scholar 

  83. S.E. Skrabalak, and K.S. Suslick, J. Am. Chem. Soc. 127, 9990 https://doi.org/10.1021/ja051654g (2005).

    Article  Google Scholar 

  84. W.H. Suh, A.R. Jang, Y.H. Suh, and K.S. Suslick, Adv. Mater. 18, 1832 https://doi.org/10.1002/adma.200600222 (2006).

    Article  Google Scholar 

  85. S. Al-Khateeb, D. Pavlopoulos, T.W. Button, and J.S. Abell, J. Supercond. Nov. Magn. 25, 1823 https://doi.org/10.1007/s10948-012-1560-y (2012).

    Article  Google Scholar 

  86. S. Al-Khateeb, D. Pavlopoulos, T.W. Button, and J.S. Abell, J. Supercond. Nov. Magn. 26, 273 https://doi.org/10.1007/s10948-012-1740-9 (2013).

    Article  Google Scholar 

  87. L. Zhang, L. Zhu, and A.V. Virkar, J. Electrochem. Soc. 163, F1358 https://doi.org/10.1149/2.0541613jes (2016).

    Article  Google Scholar 

  88. L.X. Phua, F. Xu, Y.G. Ma, and C.K. Ong, Thin Solid Films 517, 5858 https://doi.org/10.1016/j.tsf.2009.03.065 (2009).

    Article  Google Scholar 

  89. L. Vergnières, P. Odier, F. Weiss, C.E. Bruzek, and J.M. Saugrain, J. Eur. Ceram. Soc. 25, 2951 https://doi.org/10.1016/j.jeurceramsoc.2005.03.169 (2005).

    Article  Google Scholar 

  90. Y.H. Lee, S.H. Im, J.-H. Lee, and S.I. Seok, Electrochim. Acta 56, 2087 https://doi.org/10.1016/j.electacta.2010.11.080 (2011).

    Article  Google Scholar 

  91. S.A. Khateeb, Int. J. Mater. Res. 104, 301 https://doi.org/10.3139/146.110855 (2013).

    Article  Google Scholar 

  92. D. Perednis, and L. Gauckler, J. Electroceram. 14, 103 https://doi.org/10.1007/s10832-005-0870-x (2005).

    Article  Google Scholar 

  93. H. Liu, C. Song, Y. Tang, J. Zhang, and J. Zhang, Electrochim. Acta 52, 4532 https://doi.org/10.1016/j.electacta.2006.12.056 (2007).

    Article  Google Scholar 

  94. S.A. Khateeb, A.G. Lind, R. Santos-Ortiz, N.D. Shepherd, and K.S. Jones, J. Electrochem. Soc. 162, A1667 https://doi.org/10.1149/2.0021509jes (2015).

    Article  Google Scholar 

  95. L. Min, L. Danmin, Z. Meiling, Z. Yue, G. Xin, and L. Jinxia, Supercond. Sci. Technol. 17, 676 (2004).

    Article  Google Scholar 

  96. S. Al Khateeb, T.W. Button, and J.S. Abell, Supercond. Sci. Technol. 23, 095001 https://doi.org/10.1088/0953-2048/23/9/095001 (2010).

    Article  Google Scholar 

  97. D.S. Jung, T.H. Hwang, S.B. Park, and J.W. Choi, Nano Lett. 13, 2092 https://doi.org/10.1021/nl400437f (2013).

    Article  Google Scholar 

  98. S. Al-Khateeb, and T.D. Sparks, J. Mater. Res. 34, 2456 https://doi.org/10.1557/jmr.2019.208 (2019).

    Article  Google Scholar 

  99. S. Al Khateeb, and T.D. Sparks, J. Mater. Sci. 54, 4089 https://doi.org/10.1007/s10853-018-3055-0 (2019).

    Article  Google Scholar 

  100. S. Al-khateeb, A.G. Lind, R. Santos-Ortiz, N.D. Shepherd, and K.S. Jones, J. Mater. Sci. 50, 5174 https://doi.org/10.1007/s10853-015-9062-5 (2015).

    Article  Google Scholar 

  101. R. Santos-Ortiz, T. Rojhirunsakool, J.K. Jha, S. Al Khateeb, R. Banerjee, K.S. Jones, and N.D. Shepherd, Solid State Ion. 303, 103 https://doi.org/10.1016/j.ssi.2017.02.009 (2017).

    Article  Google Scholar 

  102. R.R. Chamberlin, and J.S. Skarman, J. Electrochem. Soc. 113, 86 (1966).

    Article  Google Scholar 

  103. S.D. Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke, M.G. Takwale, and K.C. Mohite, Sol. Energy 106, 56 https://doi.org/10.1016/j.solener.2013.11.029 (2014).

    Article  Google Scholar 

  104. K.V. Krishna, V. Dutta, and K.S.R.K. Rao, Phys. Status Solidi A 198, 443 https://doi.org/10.1002/pssa.200306639 (2003).

    Article  Google Scholar 

  105. S.D. Gunjal, Y.B. Khollam, R.R. Udawant, S.R. Jadkar, P.N. Shelke, J.V. Sali and K.C. Mohite, In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on, (2013), pp 360–362.

  106. H.B. Serreze, S. Lis, M.R. Squillante, R. Turcotte, M. Talbot and G. Entine, In Photovoltaic Specialists Conference, (Institute of Electrical and Electronics Engineers, Inc.: Florida, 1981), pp 1068–1072

  107. P.S. Patil, Mater. Chem. Phys. 59, 185 https://doi.org/10.1016/S0254-0584(99)00049-8 (1999).

    Article  Google Scholar 

  108. A. Gurav, T. Kodas, T. Pluym, and Y. Xiong, Aerosol Sci. Technol. 19, 411 https://doi.org/10.1080/02786829308959650 (1993).

    Article  Google Scholar 

  109. M.J. Toivo TK, Aerosol processing of materials, (WILEY-VCH, New York, 1999), pp. 1–15, 492–493, 577, 1,8,11–13,15,16,19–23,42,43,45–48,55,62–65,65,66,75–79,85–99,105,129–130,135,136,140,166,170,172,179–182,185–188,218,219,492,494,495,499, 500–504,506, 535,577, 602,603, 606–608, 610,654,655.

  110. S. Al Khateeb, B.T. Bennett, J.P. Beck, S. Jeyapalina, and T.D. Sparks, J. Mater. Res. 38, 2287 https://doi.org/10.1557/s43578-023-00961-7 (2023).

    Article  Google Scholar 

  111. C. Chaïrat, J. Schott, E.H. Oelkers, J.-E. Lartigue, and N. Harouiya, GeoChim. CosmoChim. Acta 71, 5901 https://doi.org/10.1016/j.gca.2007.08.031 (2007).

    Article  Google Scholar 

  112. J. Milan, Supercond. Sci. Technol. 8, 67 https://doi.org/10.1088/0953-2048/8/2/001 (1995).

    Article  Google Scholar 

  113. G. Blandenet, M. Court, and Y. Lagarde, Thin Solid Films 77, 81 (1981).

    Article  Google Scholar 

  114. L. Xu, X. Li, Y. Chen, and F. Xu, Appl. Surf. Sci. 257, 4031 https://doi.org/10.1016/j.apsusc.2010.11.170 (2011).

    Article  Google Scholar 

  115. W.J. Zhang, Y.M. Chong, I. Bello, and S.T. Lee, J. Phys. D: Appl. Phys. 40, 6159 https://doi.org/10.1088/0022-3727/40/20/S03 (2007).

    Article  Google Scholar 

  116. I. Vydrina, A. Malkov, K. Vashukova, I. Tyshkunova, L. Mayer, A. Faleva, S. Shestakov, E. Novozhilov, and D. Chukhchin, Carbohydr. Polym. Technol. Appl. 5, 100305 https://doi.org/10.1016/j.carpta.2023.100305 (2023).

    Article  Google Scholar 

  117. M. Inoue, and I. Hirasawa, J. Cryst. Growth 380, 169 https://doi.org/10.1016/j.jcrysgro.2013.06.017 (2013).

    Article  Google Scholar 

  118. K.L. Chopra, Thin film phenomena (McGraw-Hill, New York, London, 1969), p224.

    Google Scholar 

  119. M.A. Herman, W. Richter, and H. Sitter, Epitaxy: physical principles and technical implementation (Springer, Berlin, London, 2004), pp6–10.

    Book  Google Scholar 

  120. C.V. Thompson, J. Floro, and H.I. Smith, J. Appl. Phys. 67, 4099 https://doi.org/10.1063/1.344969 (1990).

    Article  Google Scholar 

  121. L.S. Donald, Thin-film deposition principles and practices (McGraw-ill, Newyork, 1995).

    Google Scholar 

  122. D. Krupa, J. Baszkiewicz, J. Zdunek, J. Smolik, Z. Słomka, and J.W. Sobczak, Surf. Coat. Technol. 205, 1743 https://doi.org/10.1016/j.surfcoat.2010.05.015 (2010).

    Article  Google Scholar 

  123. D.V. Vasudev, J.L. Ricci, C. Sabatino, P. Li, and J.R. Parsons, J. Biomed. Mater. Res. Part A 69, 629 https://doi.org/10.1002/jbm.a.30028 (2004).

    Article  Google Scholar 

  124. F. Romero-Gavilán, A. Cerqueira, I. García-Arnáez, M. Azkargorta, F. Elortza, M. Gurruchaga, I. Goñi, and J. Suay, J. Biomed. Mater. Res. Part A 111, 45 https://doi.org/10.1002/jbm.a.37444 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Department of Defense CDMRP PRORP (award number W81XWH-15-1-0682), USA. This work has been conducted during the sabbatical leave granted to Dr. Shadi Al Khateeb from Al-Balqa Applied University (BAU) during the academic year 2017–2018.

Funding

Congressionally Directed Medical Research Programs, W81XWH-15-1-0682, Sujee Jeyapalina.

Author information

Authors and Affiliations

Authors

Contributions

SAK: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing—Original Draft, Writing—Review & editing. BTB: Methodology, Investigation. JPB: Validation. SJ: Resources, Funding acquisition. TDS: Conceptualization, Validation, Resources, Writing—Review & editing, Funding acquisition.

Corresponding authors

Correspondence to Shadi Al Khateeb or Taylor D. Sparks.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Khateeb, S., Bennett, B.T., Beck, J.P. et al. Morphological Evolution Effect on the Performance of Spray Pyrolysis-Based Synthesis of Fluorapatite Thin Films for Bioimplant Applications. JOM 75, 3332–3344 (2023). https://doi.org/10.1007/s11837-023-05892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05892-6

Navigation