Skip to main content
Log in

Using Magnesium Chloride to Volatilize Impurity Metals from Waste Magnesia–Chromium Refractories

  • Characterization of Waste-Derived Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Waste magnesia–chromium refractories from nonferrous smelting contain many valuable metals. High-grade metal concentrates can be obtained through gravity-flotation separation, but the tailings still contain a small amount of nonferrous metal, which prevents their direct regeneration. Thermodynamic analysis shows that magnesium chloride can be used as a chlorinating agent to volatilize the metal oxides. Under optimal processing conditions of nitrogen atmosphere, roasting temperature of 1100°C, magnesium chloride dosage of 9% and roasting time of 40 min, the contents of lead, bismuth, antimony and copper in roasting slag are 0.03%, 0.05%, 0.51% and 0.12%, respectively, and their volatilization rates are 99.22%, 97.60%, 80.73% and 88.51%. Comparing the microstructure of the roasting slag and the original refractory material, their chemical composition and crystal structure are basically the same. Therefore, volatile slag can be added as powder in the subsequent refractory regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Acar, Ceram. Int. 46, 28025. (2020).

    Article  Google Scholar 

  2. A. Atkinson, P. Bastid, and Q. Liu, J. Am. Ceram. Soc. 90, 2489. (2007).

    Article  Google Scholar 

  3. Z. Peng, H. Tang, R. Augustine, J. Lee, W. Tian, Y. Chen, F. Gu, Y. Zhang, G. Li, and T. Jiang, Resour. Conserv. Recycl. 149, 521. (2019).

    Article  Google Scholar 

  4. K. Gotod, and W.E. Lee, J. Am. Ceram. Soc. 78, 1753. (1995).

    Article  Google Scholar 

  5. D.H. Kim, S.H. Yoo, C.S. Ha, J.M. Park, K.S. Lee, and S.M. Kim, J. Ceram. Soc. Jpn. 113, 405. (2005).

    Article  Google Scholar 

  6. P.G. Lampropoulou, and C.G. Katagas, Ceram. Int. 34, 12470. (2008).

    Article  Google Scholar 

  7. Y. Zou, H. Gu, A. Huang, M. Zhang, and P. Lian, Ceram. Int. 42, 18560. (2016).

    Article  Google Scholar 

  8. S. Belgacem, H. Galai, and H. Tiss, Ceram. Int. 42, 19147. (2016).

    Article  Google Scholar 

  9. D. Gregurek, A. Ressler, V. Reiter, A. Franzkowiak, A. Spanring, and T. Prietl, JOM 65, 1622. (2013).

    Article  Google Scholar 

  10. W. Wang, L. Xue, T. Zhang, L. Zhou, J. Chen, and Z. Pan, Ceram. Int. 45, 20664. (2019).

    Article  Google Scholar 

  11. T. Xu, Y. Xu, Y. Li, S. Sang, Q. Wang, T. Zhu, M. Nath, and B. Zhang, J. Alloy. Compd. 786, 306. (2019).

    Article  Google Scholar 

  12. M. Chen, Y. Jiang, Z. Cui, C. Wei, and B. Zhao, Jom, 70, 2443. (2018).

  13. R.R. Kaur, D.R. Swinbourne, M.W. Wadsley, and C. Nexhip, Metall Mater Trans B, 42, 451 (2011).

  14. L. Heidari, and M. J. Ghazizade, Process Safety Environ. Protect., 145, 133. (2021).

  15. L. Horckmans, P. Nielsen, P. Dierckx, and A. Ducastel, Resour. Conserv. Recycl. 140, 297. (2019).

  16. A. Malfliet, S. Lotfian, L. Scheunis, V. Petkov, L. Pandelaers, P.T. Jones, and B. Blanpain, J. Eur. Ceram. Soc., 34, 849. (2014).

  17. K. Bezdekova and M. Vesely, Chemicke listy. 96, 792. (2002).

    Google Scholar 

  18. D. Mohan, and C.U. Pittman Jr., J. Hazard. Mater. 137, 762. (2006).

    Article  Google Scholar 

  19. S. Samantaroy, A.K. Mohanty, and M. Misra, J. Appl. Polym. Sci. 66, 1485. (1997).

    Article  Google Scholar 

  20. A. Violante, V. Cozzolino, L. Perelomov, A.G. Caporale, and M. Pigna, J. Soil Sci. Plant Nutr. 10, 268. (2010).

    Article  Google Scholar 

  21. K. Nakayama, Y. Tanaka, Y. Tajima, Y. Kojima, S. Ozawa, H. Matsuda, and M. Takada, Kagaku Kogaku Ronbunshu 29, 787. (2003).

    Article  Google Scholar 

  22. C. Chan, C.Q. Jia, J.W. Graydon, and D.W. Kirk, J. Hazard. Mater. 50, 1. (1996).

    Article  Google Scholar 

  23. J. Han, F. Jiao, W. Liu, W. Qin, T. Xu, K. Xue, and T. Zhang, ACS Sustain. Chem. Eng. 4, 5503. (2016).

    Article  Google Scholar 

  24. K. Xue, J. Han, F. Jiao, W. Liu, W. Qin, L. Cai, and T. Xu, Miner. Eng. 127, 125. (2018).

    Article  Google Scholar 

  25. F. Jiao, W. Li, K. Xue, C. Yang, and W. Qin, Sep. Purif. Technol. 227, 115705. (2019).

    Article  Google Scholar 

  26. K. Xue, W. Li, F. Jiao, W. Qin, and C. Yang, J. Sustain. Metall. 7, 898. (2021).

  27. W. Chu, Water Res. 33, 3019. (1999).

    Article  Google Scholar 

  28. M. Scheer, Coord. Chem. Rev. 163, 271. (1997).

    Article  Google Scholar 

  29. L. Chen, A. Malfliet, P.T. Jones, B. Blanpain, and M. Guo, Ceram. Int. 42, 743. (2016).

    Article  Google Scholar 

  30. C. Wagner, C. Wenzl, D. Gregurek, D. Kreuzer, S. Luidold, and H. Schnideritsch, Metall. Mater. Trans. B. 48, 119. (2017).

    Article  Google Scholar 

  31. L. Xu, M. Chen, N. Wang, S. Gao, and Y. Wu, Ceram. Int. 46, 17315. (2020).

    Article  Google Scholar 

  32. G. Fraissler, M.M. Jöller, H. Mattenberger, T. Brunner, and I. Obernberger, Chem. Eng. Process. 48, 152. (2009).

    Article  Google Scholar 

  33. R.O. Loutfy, J.C. Withers, S.K. Das, and S.S. Jones, US4529717 (1984).

  34. X.-D. Wang, J.-L. Cui, X.-L. Ge, S.-L. Zheng, M. Zhang, and Y. Zhang, Int. J. Min. Metall. Mater. 11, 500. (2004).

    Google Scholar 

  35. Y. Zhang, S. Zheng, H. Du, H. Xu, and Y. Zhang, J. Chem. Eng. Data 55, 2542. (2010).

    Article  Google Scholar 

  36. J.J. Miller, In American Doctoral Dissertations, (The University Of Texas At Austin: 1936), p 28.

  37. Y.-Y. Deng, H.-Z. Wang, and H.-Z. Zhao, Ceram. Int. 34, 573. https://doi.org/10.1016/j.ceramint.2006.12.002 (2008).

    Article  Google Scholar 

  38. Z.F. Yuan, W.L. Huang, and K. Mukai, J. Colloid Interface Sci. 253, 211. (2002).

    Article  Google Scholar 

  39. G. Grause, N. Yamamoto, T. Kameda, and T. Yoshioka, Int. J. Environ. Sci. Technol. 11, 959. (2014).

    Article  Google Scholar 

  40. I. Leusbrock, S.J. Metz, G. Rexwinkel, and G.F. Versteeg, J. Supercrit. Fluids 53, 17. (2010).

    Article  Google Scholar 

  41. J. Han, W. Liu, W. Qin, B. Peng, K. Yang, and Y. Zheng, J. Ind. Eng. Chem. 22, 272. (2015).

    Article  Google Scholar 

  42. C.-R. Yang, F. Jiao, and W.-Q. Qin, J. Central South Univ. 25, 2380. (2018).

    Article  Google Scholar 

  43. J. Han, W. Liu, D. Wang, F. Jiao, T. Zhang, and W. Qin, Metall. Mater. Trans. B. 47, 2400. (2016).

    Article  Google Scholar 

  44. W. Liu, J.W. Han, W.Q. Qin, L.Y. Chai, D.K. Hou, and Y. Kong, Can. Metall. Q. 53, 176. (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by National Key R&D Program of China (2020YFC1909203), Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources (Grant No. 2018TP1002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congren Yang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Jiao, F., Li, W. et al. Using Magnesium Chloride to Volatilize Impurity Metals from Waste Magnesia–Chromium Refractories. JOM 74, 1350–1359 (2022). https://doi.org/10.1007/s11837-022-05160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05160-z

Navigation