Skip to main content
Log in

Microstructure, Hardness and Wear Behavior of AlxCoCrFe2Ni (x = 0.3, 0.7, 1.0) High Entropy Alloy Coatings Prepared by Laser Cladding

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To develop inexpensive high-strength high entropy alloy (HEA) coatings, microstructure, hardness and wear behavior of AlxCoCrFe2Ni (with x = 0.3, 0.7, 1.0) high-entropy alloy coatings prepared by laser cladding were investigated in this work. It was found that the phase composition and microstructure of coatings with high Fe content could be tailored by adjusting Al content. Addition of Al could cause the phase to evolve from FCC to a mixture of FCC, ordered BCC (B2) and disordered BCC (A2) and finally to a mixture of A2 and B2. The hardness increased with the change of phase composition, resulting in a higher hardness (621HV) and better wear resistance at x = 1.0. The microstructure of AlCoCrFe2Ni coating consisted of spherical nano-scale B2 particles and A2 matrix. The strengthening effects of A2/B2 morphology were estimated and strengthening of order was the most important strengthening factor. In addition, the main wear mechanism was abrasive wear with decreasing fraction of oxidation wear as Al content increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213. (2004).

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299. (2004).

    Article  Google Scholar 

  3. J.W. Yeh, JOM 65, 1759. (2013).

    Article  Google Scholar 

  4. M.H. Tsai, J.H. Li, A.C. Fan, and P.H. Tsai, Scr. Mater. 127, 6. (2017).

    Article  Google Scholar 

  5. R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y. Chiu, H. Ding, J. Guo, and H. Fu, Acta Mater. 144, 129. (2018).

    Article  Google Scholar 

  6. C. Wang, T. Li, Y. Liao, C. Li, J.S. Jang, and C. Hsueh, Mater. Sci. Eng. A 764, 138192. (2019).

    Article  Google Scholar 

  7. T. Zuo, M. Zhang, P.K. Liaw, and Y. Zhang, Intermetallics 100, 1. (2018).

    Article  Google Scholar 

  8. Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corros. Sci. 119, 33. (2017).

    Article  Google Scholar 

  9. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic, Wear 428–429, 32. (2019).

    Article  Google Scholar 

  10. T.M. Butler, and M.L. Weaver, J. Alloys Compd. 674, 229. (2016).

    Article  Google Scholar 

  11. X. Fu, C.A. Schuh, and E.A. Olivetti, Scripta Mater. 138, 145. (2017).

    Article  Google Scholar 

  12. Q. Chao, T. Guo, T. Jarvis, X. Wu, P. Hodgson, and D. Fabijanic, Surf. Coat. Technol. 332, 440. (2017).

    Article  Google Scholar 

  13. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and J.T.M. de Hosson, Acta Mater. 131, 206. (2017).

    Article  Google Scholar 

  14. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Acta Mater. 62, 105. (2014).

    Article  Google Scholar 

  15. Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P. Liaw, F. Xu, and L. Sun, Metals 7, 57. (2017).

    Article  Google Scholar 

  16. Y. Linden, M. Pinkas, A. Munitz, and L. Meshi, Scr. Mater. 139, 49. (2017).

    Article  Google Scholar 

  17. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, and Y. Wang, Mater. Sci. Eng. A 648, 15. (2015).

    Article  Google Scholar 

  18. Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, and T.G. Nieh, Acta Mater. 147, 213. (2018).

    Article  Google Scholar 

  19. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Intermetallics 26, 44. (2012).

    Article  Google Scholar 

  20. C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, and P.K. Liaw, Mater. Des. 109, 425. (2016).

    Article  Google Scholar 

  21. G.J. Zhang, Q.W. Tian, K.X. Yin, S.Q. Niu, M.H. Wu, W.W. Wang, Y.N. Wang, and J.C. Huang, Intermetallics 119, 106722. (2020).

    Article  Google Scholar 

  22. Z. Cai, G. Jin, X. Cui, Z. Liu, W. Zheng, Y. Li, and L. Wang, Mater. Charact. 120, 229. (2016).

    Article  Google Scholar 

  23. H. Zhang, Y. Pan, Y. He, and H. Jiao, Appl. Surf. Sci. 257, 2259. (2011).

    Article  Google Scholar 

  24. G. Jin, Z. Cai, Y. Guan, X. Cui, Z. Liu, Y. Li, M. Dong, and D. Zhang, Appl. Surf. Sci. 445, 113. (2018).

    Article  Google Scholar 

  25. S. Zhang, C.L. Wu, C.H. Zhang, M. Guan, and J.Z. Tan, Opt. Laser Technol. 84, 23. (2016).

    Article  Google Scholar 

  26. H. Liu, J. Liu, P. Chen, and H. Yang, Opt. Laser Technol. 118, 140. (2019).

    Article  Google Scholar 

  27. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, J. Mater. Sci. Technol. 35, 917. (2019).

    Article  Google Scholar 

  28. A. Takeuchi, and A. Inoue, Mater. Trans. 46, 2817. (2005).

    Article  Google Scholar 

  29. B. Jin, N. Zhang, S. Guan, Y. Zhang, and D. Li, Surf. Coat. Technol. 349, 867. (2018).

    Article  Google Scholar 

  30. Y. Wang, Y. Yang, H. Yang, M. Zhang, and S. Ma, Mater. Chem. Phys. 210, 233. (2018).

    Article  Google Scholar 

  31. F. Shu, B. Yang, S. Dong, H. Zhao, B. Xu, F. Xu, and B. Liu, Appl. Surf. Sci. 450, 538. (2018).

    Article  Google Scholar 

  32. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534. (2008).

    Article  Google Scholar 

  33. X. Yang, and Y. Zhang, Mater. Chem. Phys. 132, 233. (2012).

    Article  Google Scholar 

  34. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505. (2011).

    Article  Google Scholar 

  35. S. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, and J. Schroers, Acta Mater. 166, 677. (2019).

    Article  Google Scholar 

  36. Y. Zhou, X. Jin, L. Zhang, X. Du, and B. Li, Mater. Sci. Eng. A 716, 235. (2018).

    Article  Google Scholar 

  37. Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, and B. Li, Sci. Rep. 8, 1. (2018).

    Google Scholar 

  38. N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, M.A. Tikhonovsky, and S.V. Zherebtsov, J. Alloys Compd. 770, 194. (2019).

    Article  Google Scholar 

  39. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, and R. Banerjee, Acta Mater. 116, 63. (2016).

    Article  Google Scholar 

  40. M. Li, J. Gazquez, A. Borisevich, R. Mishra, and K.M. Flores, Intermetallics 95, 110. (2018).

    Article  Google Scholar 

  41. Q. Tian, G. Zhang, K. Yin, W. Wang, W. Cheng, and Y. Wang, Mater. Charact. 151, 302. (2019).

    Article  Google Scholar 

  42. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu, Acta Mater. 102, 187. (2016).

    Article  Google Scholar 

  43. Y. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, and H. Cai, Nat. Commun. 9, 1. (2018).

    Article  Google Scholar 

  44. T. Hong, and A.J. Freeman, Phys. Rev. B 43, 6446. (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the National Key Research and Development Program of China (No. 2019YFA0705300) and from City University of Hong Kong under Grant Nos. 9380088 and 7005078.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. N. Wang or J. C. Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G.J., Tian, Q.W., Yin, K.X. et al. Microstructure, Hardness and Wear Behavior of AlxCoCrFe2Ni (x = 0.3, 0.7, 1.0) High Entropy Alloy Coatings Prepared by Laser Cladding. JOM 73, 3597–3605 (2021). https://doi.org/10.1007/s11837-021-04874-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04874-w

Navigation