Skip to main content
Log in

Effect of Mn Addition on Melt Purification and Fe Tolerance in Mg Alloys

  • Thermodynamic Optimization of Critical Metals Processing and Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two methods for impeding the detrimental impact of iron (Fe) impurity in magnesium (Mg) alloys on the corrosion properties are studied: the addition of manganese (Mn) and the selection of melting temperature. Experimental work was carried out on Mg and AZ91 alloys with selected additions of Mn and selected settling temperatures. The settling velocity was evaluated using the Stokes equation. Extensive thermodynamic calculations using different databases in comparison were performed and supported by experimental observations. The conditions for the formation of the different types of precipitate phases and their detailed composition are revealed. Practical guidelines for settling temperature and time are proposed. The tolerance limit of Fe, expressed by the critical Fe/Mn ratio, could be related to key phase boundaries in the calculated Mg-Aluminum (Al)-(Zn)-Mn-Fe phase diagrams for AM and AZ types of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.B. Abbott, Corrosion 71, 120 (2015).

    Article  Google Scholar 

  2. W.J. Joost and P.E. Krajewski, Scr. Mater. 128, 107 (2017).

    Article  Google Scholar 

  3. S. You, Y. Huang, K.U. Kainer, and N. Hort, J. Magnes. Alloy 5, 239 (2017).

    Article  Google Scholar 

  4. J.P. Weiler, J. Magnes. Alloy 7, 297 (2019).

    Article  Google Scholar 

  5. J. Song, J. She, D. Chen, and F. Pan, J. Magnes. Alloy 8, 1 (2020).

    Article  Google Scholar 

  6. A. Atrens, G. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015).

    Article  Google Scholar 

  7. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Prog. Mater Sci. 89, 92 (2017).

    Article  Google Scholar 

  8. M. Liu and G. Song, Corros. Sci. 77, 143 (2013).

    Article  Google Scholar 

  9. K. Gusieva, C. Davies, J. Scully, and N. Birbilis, Int. Mater. Rev. 60, 169 (2015).

    Article  Google Scholar 

  10. T. Morishige, K. Ueno, M. Okano, T. Goto, E. Nakamura, and T. Takenaka, Mater. Trans. 55, 1506 (2014).

    Article  Google Scholar 

  11. Z. Qiao, Z. Shi, N. Hort, N.I. Zainal Abidin, and A. Atrens, Corros. Sci. 61, 185 (2012).

    Article  Google Scholar 

  12. H. Gao, G. Wu, W. Ding, L. Liu, X. Zeng, and Y. Zhu, Mater. Sci. Eng., A 368, 311 (2004).

    Article  Google Scholar 

  13. G. Wu, H. Gao, W. Ding, and Y. Zhu, J. Mater. Sci. 40, 6175 (2005).

    Article  Google Scholar 

  14. M. Liu, P. Uggowitzer, P. Schmutz, and A. Atrens, JOM 60, 39 (2008).

    Article  Google Scholar 

  15. G.T. Parthiban, N. Palaniswamy, and V. Sivan, Anti-corros. Meth. Mater. 56, 79 (2009).

    Article  Google Scholar 

  16. H. Matsubara, Y. Ichige, K. Fujita, H. Nishiyama, and K. Hodouchi, Corros. Sci. 66, 79 (2013).

    Article  Google Scholar 

  17. N. Birbilis, G. Williams, K. Gusieva, A. Samaniego, M.A. Gibson, and H.N. McMurray, Electrochem. Commun. 34, 295 (2013).

    Article  Google Scholar 

  18. F. Pan, X. Chen, T. Yan, T. Liu, J. Mao, W. Luo, Q. Wang, J. Peng, A. Tang, and B. Jiang, J. Magnes. Alloy 4, 8 (2016).

    Article  Google Scholar 

  19. G. Wu, M. Sun, W. Wang, and W. Ding, Chin. J. Nonferrous Metals. 20, 1021 (2010).

    Google Scholar 

  20. A. Prasad, P.J. Uggowitzer, Z. Shi, and A. Atrens, Adv. Eng. Mater. 14, 477 (2012).

    Article  Google Scholar 

  21. T. Chen, X. Xiong, Y. Yuan, A. Tang, D. Li, A. Atrens, and F. Pan, Adv. Eng. Mater. 8, 8 (2020).

    Google Scholar 

  22. C. Scharf and A. Ditze, Adv. Eng. Mater. 9, 566 (2007).

    Article  Google Scholar 

  23. X. Chen, F. Pan, J. Mao, and J. Huang, J. Mater. Sci. 47, 514 (2011).

    Article  Google Scholar 

  24. D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, and N. Birbilis, Corros. Sci. 81, 27 (2014).

    Article  Google Scholar 

  25. D. Gandel, N. Birbilis, M. Easton, and M. Gibson, Influence of manganese, zirconium and iron on the corrosion of magnesium, Proceedings of corrosion prevention 2010, Adelaide, Australia, 2010.

  26. J.E. Hillis, SAE, 830523 (1983).

  27. K.N. Reichek, K.J. Clark, and J.E. Hillis, SAE, 850417 (1985).

  28. J.E. Hillis and K.N. Reichek, SAE, 860288 (1986).

  29. J.E. Hillis and S.O. Shook, SAE, 890205 (1989).

  30. W.E. Mercer and J.E. Hillis, SAE, 920073 (1992).

  31. R. Schmid-Fetzer, J. Phase Equilib. Diff. 35, 735 (2014).

    Article  Google Scholar 

  32. R. Shi and A.A. Luo, Calphad 62, 1 (2018).

    Article  Google Scholar 

  33. R. Schmid-Fetzer and F. Zhang, Calphad 61, 246 (2018).

    Article  Google Scholar 

  34. Y. Yuan, The Integrated Alloy Design of Anti-corrosion Magnesium Alloy, TMS 2020, 149th Annual Meeting & Exhibition, San Diego, California, USA, 2020.

  35. A.R. Natarajan and A. Van der Ven, Phys. Rev. B, 95 (2017).

  36. A. Van der Ven, J.C. Thomas, B. Puchala, and A.R. Natarajan, Annu. Rev. Mater. Res. 48, 27 (2018).

    Article  Google Scholar 

  37. L. Tian and W. Yu, Comp. Mater. Sci., 186 (2021).

  38. J.O. Andersson, T. Helander, L. Höglund, and P. Shi, Calphad 26, 273 (2002).

    Article  Google Scholar 

  39. V. Mitrovic-Scepanovic, R.H. Packwood, G.J.C. Carpenter, and R.J. Brighham, Can. Metall. Q. 33, 61 (1994).

    Article  Google Scholar 

  40. L. Peng, G. Zeng, T.C. Su, H. Yasuda, K. Nogita, and C.M. Gourlay, JOM 71, 2235 (2019).

    Article  Google Scholar 

  41. G. Han and X. Liu, Acta Mater. 114, 54 (2016).

    Article  Google Scholar 

  42. D.S. Gandel, M.A. Easton, M.A. Gibson, and N. Birbilis, Corrosion 69, 744 (2013).

    Article  Google Scholar 

  43. M. Liu, P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G. Song, and A. Atrens, Corros. Sci. 51, 602 (2009).

    Article  Google Scholar 

  44. E.F. Volkova, Metal. Sci. Heat Treat. 59, 154 (2017).

    Article  Google Scholar 

  45. R.M. Wang, A. Eliezer, and E.M. Gutman, Mater. Sci. Eng. A 355, 201 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from National Natural Science Foundation of China (51971044 and U1910213), Natural Science Foundation of Chongqing (cstc2019yszx-jcyjX0004 and cstc2018jcyjAX0070), Qinghai Provincial Science and Technology Key Program (No. 2018-GX-A1), National Key Research and Development Program of China (2016YFB0301102) and Fundamental Research Funds for the Central Universities (2019CDJGFCL005 and 2020CDJDPT001). A fellowship from the Karlsruhe Institute of Technology for the research guest stay of author Prof. Yuan Yuan during preparation of this manuscript is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Yuan, Y., Liu, T. et al. Effect of Mn Addition on Melt Purification and Fe Tolerance in Mg Alloys. JOM 73, 892–902 (2021). https://doi.org/10.1007/s11837-020-04550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04550-5

Navigation