Skip to main content
Log in

Towards Functionally Graded Sand Molds for Metal Casting: Engineering Thermo-mechanical Properties Using 3D Sand Printing

  • Solid Freeform Fabrication 2019
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Growing applications of additive manufacturing (AM) have now been adopted for metal castings via indirect hybrid AM, i.e., 3D sand printing (3DSP). A comprehensive study on the thermo-physical properties of 3DSP molds based on 3DSP processing conditions and their effects on materials and mechanical properties of resulting aluminum castings is presented. The effect of furan binder content (i.e., 1–3%) on as-printed 3DSP molds is evaluated to determine changes in dimensional accuracy, density (helium pycnometry), actual binder content (loss on ignition) and mechanical strength (three-point bending and tensile testing) and thermal properties (transient plane source technique and casting runs). Pore network characterization via mercury intrusion porosimetry does not reveal any significant differences in the morphology of pore structures due to varying binder concentrations. However, bulk permeability is reduced with increasing binder content. Thermal analysis shows a reduction in conductivity and heat capacity due to binder degradation. Findings from this study will enable the optimum selection of binder content for functional grading of 3DSP molds/cores for adequate degassing and mechanical strength, which is ready for adoption by both foundries and 3DSP service providers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Grand View Research, Aluminum Casting Market Worth $86.5 Billion by 2025 (Grand View Research, 2019). https://www.grandviewresearch.com/press-release/global-aluminum-casting-market. Accessed 21 May 2019.

  2. E.S. Almaghariz, B.P. Conner, L. Lenner, R. Gullapalli, G.P. Manogharan, B. Lamoncha, and M. Fang, Int. J. Metalcast. 10, 240 (2016).

    Google Scholar 

  3. D. Strong, I. Sirichakwal, G.P. Manogharan, and T. Wakefield, Rapid Prototyp. J. 23, 577 (2017).

    Google Scholar 

  4. E.S. Almaghariz, MSc Thesis, Youngstown State University (2015).

  5. J. Wang, S.R. Sama, and G. Manogharan, Int. J Metalcast. 13, 2 (2019).

    Google Scholar 

  6. S.R. Sama, J. Wang, and G. Manogharan, J. Manuf. Process. 34, 765 (2018).

    Google Scholar 

  7. S.R. Sama, T. Badamo, P. Lynch, and G. Manogharan, Addit. Manuf. 25, 563 (2019).

    Google Scholar 

  8. C. Weller, R. Kleer, and F.T. Piller, Int. J. Prod. Econ. 164, 43 (2015).

    Google Scholar 

  9. D. Snelling, Q. Li, N. Meisel, C.B. Williams, R.C. Batra, and A.P. Druschitz, Adv. Eng. Mater. 17, 923 (2015).

    Google Scholar 

  10. P. Hackney and R. Wooldridge, Procedia Manuf. 11, 457 (2017).

    Google Scholar 

  11. B. Rooks, Assem. Autom. 22, 40 (2002).

    Google Scholar 

  12. A. Bernard, J.C. Delplace, N. Perry, and S. Gabriel, Rapid Prototyp. J. 9, 327 (2012).

    Google Scholar 

  13. S. Mitra, A. Rodríguez de Castro, and M. El Mansori, Int. J. Adv. Manuf. Technol. 97, 1241 (2018).

    Google Scholar 

  14. K. Nyembwe, M. Mashila, P.J.M. van Tonder, D.J. de Beer, and E. Gonya, S. Afr. J. Ind. Eng. 27, 136 (2016).

    Google Scholar 

  15. T. Sivarupan, M. El Mansori, K. Daly, M.N. Mavrogordato, and F. Pierron, Rapid Prototyp. J. 25, 404 (2019).

    Google Scholar 

  16. A.V. Adedayo, J. Braz. Soc. Mech. Sci. Eng. 32, 171 (2010).

    Google Scholar 

  17. A.V. Adedayo, B. Aremo, and P. Si, J. Miner. Mater. Charact. Eng. 10, 387 (2011).

    Google Scholar 

  18. C. Saikaew and S. Wiengwiset, Appl. Clay Sci. 67–68, 26 (2012).

    Google Scholar 

  19. C.Y. Deng, J.W. Kang, H.L. Shangguan, T. Huang, X.P. Zhang, Y.Y. Hu, and T. Huang, China Foundry 15, 37 (2018).

    Google Scholar 

  20. C. Deng, J. Kang, H. Shangguan, Y. Hu, T. Huan, and Z. Liu, J. Mater. Process. Technol. 255, 516 (2018).

    Google Scholar 

  21. H. Shangguan, J. Kang, C. Deng, J. Yi, Y. Hu, and T. Huang, Int. J. Adv. Manuf. Technol. 96, 2175 (2018).

    Google Scholar 

  22. P.M. Hackney and R. Wooldridge, Rapid Prototyp. J. 23, 7 (2017).

    Google Scholar 

  23. S. Mitra, A. Rodríguez de Castro, and M. El Mansori, J. Manuf. Process. 42, 202 (2019).

    Google Scholar 

  24. AFS, Procedure 5100-00-S, Mold Core Test Handbook, 3rd ed. (Shaumburg-IL: AFS, 2001).

    Google Scholar 

  25. A. Gardziella, L. Pilato, and A. Knop, Phenolic Resins—Chemistry, Applications, Standardization, Safety and Ecology, 2nd ed. (Berlin: Springer, 2000).

    Google Scholar 

  26. I. Chatzis and F.A.L. Dullien, Int. Chem. Eng. 25, 47 (1985).

    Google Scholar 

  27. H.H. Yuan and B.F. Swanson, SPE Form. Eval. 4, 17 (1989).

    Google Scholar 

  28. M.M. Labani, R. Rezaee, A. Saeedi, and A. Al Hinai, J. Pet. Sci. Eng. 112, 7 (2013).

    Google Scholar 

  29. R.A. Cook and K.C. Hover, Cem. Concr. Res. 29, 933 (1999).

    Google Scholar 

  30. A.B. Abell, K.L. Willis, and D.A. Lange, J. Colloid Interface Sci. 211, 39 (1999).

    Google Scholar 

  31. C. Gallé, Cem. Concr. Res. 31, 1467 (2001).

    Google Scholar 

  32. A.B. Selkirk and D. Ganderton, J. Pharm. Pharmacol. 22, 79S (1970).

    Google Scholar 

  33. F. Carli and A. Motta, J. Pharm. Sci. 73, 197 (1984).

    Google Scholar 

  34. A.M. Juppo, Int. J. Pharm. 129, 1 (1996).

    Google Scholar 

  35. P.A. Webb, An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data (Micromeritics Inst Corp, 2001), https://www.micromeritics.com/pdf/app_articles/mercury_paper.pdf. Accessed 21 May 2019.

  36. P.K. Krajewski, J.S. Suchy, G. Piwowarski, and W.K. Krajewski, Arch. Foundry Eng. 15, 47 (2015).

    Google Scholar 

  37. P.K. Krajewski, G. Piwowarski, and J.S. Suchy, Arch. Foundry Eng. 14, 67 (2014).

    Google Scholar 

  38. Y. Xu and D. Chung, Cem. Concr. Res. 30, 59 (2000).

    Google Scholar 

  39. T.J. Williams, MSc Thesis, University of Iowa, 2016.

  40. T.J. Williams, R.A. Hardin, and C. Beckermann, in Proceedings of the 68th SFSA Technical and Opererating Conference, Paper No. 4.6 (2014).

  41. M.T. Sun and C.H. Chang, J. Heat Transf. 129, 1119 (2007).

    Google Scholar 

  42. R. Coquard, E. Coment, G. Flasquin, and D. Baillis, Int. J. Therm. Sci. 65, 242 (2013).

    Google Scholar 

  43. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991).

    Google Scholar 

  44. T. Log and S.E. Gustafsson, Fire Mater. 19, 43 (1995).

    Google Scholar 

  45. P. Jelinek and T. Elbel, Arch. Foundry Eng. 10, 77 (2010).

    Google Scholar 

  46. N. Chvorinov, Proc. Inst. Br. Foundrym 32, 229 (1938).

    Google Scholar 

  47. P. Beeley, Foundry Technology, 2nd ed. (Oxford: Butterworth-Heinemann, 2001).

    Google Scholar 

  48. S. Atre, K. Kate, and J. Porter, in European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings (2016), p. 1.

  49. D. Hong, D.T. Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H.A. Kuhn, and P.N. Kumta, Acta Biomater. 45, 375 (2016).

    Google Scholar 

  50. B. Yun and C. Williams, Rapid Prototyp. J. 21, 177 (2015).

    Google Scholar 

  51. AFS, Procedure 3301-08-S, Mold Core Test Handbook, 3rd ed. (Shaumburg-IL: AFS, 2001).

    Google Scholar 

  52. B. Primkulov, J. Chalaturnyk, R. Chalaturnyk, and G. Zambrano Narvaez, 3D Print Addit. Manuf. 4, 149 (2017).

    Google Scholar 

  53. AFS, Procedure 5224-13-S, Mold Core Test Handbook, 3rd ed. (Shaumburg-IL: AFS, 2001).

    Google Scholar 

  54. VDG, Biegefestigkeit von warmhärtenden, kunstharzgebundenen feuchten Formstoffen (Düsseldorf, 1999).

  55. ASTM E290-09, Standard Test Methods for Bend Testing of Material for Ductility (West Choshohocken: ASTM E290-09, 2009).

    Google Scholar 

  56. E.W. Washburn, Phys. Rev. 17, 273 (1921).

    Google Scholar 

  57. G.F. Vander Voort, Metallography—Principles and Practice (Materials Park: ASM International, 1999).

    Google Scholar 

  58. P. Sirivimonpa and N. Osothsilp, Key Eng. Mater. 765, 255 (2018).

    Google Scholar 

  59. H. Khandelwal and B. Ravi, Mater. Manuf. Process. 30, 1465 (2015).

    Google Scholar 

  60. N. Coniglio, T. Sivarupan, and M. El Mansori, Int. J. Adv. Manuf. Technol. 94, 2175 (2018).

    Google Scholar 

  61. K.J. Hodder and R.J. Chalaturnyk, Addit. Manuf. 28, 649 (2019).

    Google Scholar 

  62. S. Tamas and B. Dermot, in Solid Free Fabrication Symposium Proceedings (2007), p. 470.

  63. D. Snelling, C.B. Williams, and A.P. Druschitz, in Solid Free Fabrication Symposium Proceedings (2014), p. 197.

  64. O. Tsumura, H. Narita, D. Tomigashi, M. Okino, and K. Miyauchi, Jpn. Foundry Eng. Soc. 81, 77 (2009).

    Google Scholar 

  65. H. Khandelwal and B. Ravi, J. Manuf. Process. 22, 127 (2016).

    Google Scholar 

  66. EnvisionTEC, “Viridis3D” (EnvisionTEC), https://envisiontec.com/3d-printers/robotic-additive-manufacturing/. Accessed 24 Sept 2019.

  67. J. Thole and C. Beckermann, Int. J. Metalcast. 4, 7 (2010).

    Google Scholar 

  68. B.J. Stauder, H. Kerber, and P. Schumacher, J. Mater. Process. Technol. 237, 188 (2016).

    Google Scholar 

  69. K. Meyer and P. Klobes, Fresenius J. Anal. Chem. 363, 174 (1999).

    Google Scholar 

  70. C. Gau and R. Viskanta, J. Heat Transf. 108, 174 (1986).

    Google Scholar 

  71. L.J. Williams and H. Abdi, Fisher’s least significant difference (LSD) test.Encyclopedia of Research Design, ed. N. Salkind (Thousand Oaks: Sage, 2010),

    Google Scholar 

  72. D. Stefanescu and R. Ruxanda, Solidification structure of aluminum alloys, in ASM Handbook Volume 9Metallography and Microstructures (Novelty, ASM International, 2004), p. 107.

  73. D. Stefanescu, Science and Engineering of Casting Solidification (New York: Springer, 2002).

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Robert Voigt for his expert advice and Chris Anderson and Travis Richner for helping with casting trials. This work was partially funded by a PA Manufacturing Fellows Grant from the PA Department of Community and Economic Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Manogharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, D., Bate, C. & Manogharan, G. Towards Functionally Graded Sand Molds for Metal Casting: Engineering Thermo-mechanical Properties Using 3D Sand Printing. JOM 72, 1340–1354 (2020). https://doi.org/10.1007/s11837-019-03975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03975-x

Navigation