Skip to main content
Log in

Carbon Cathode Wear in Aluminium Electrolysis Cells

  • Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Autopsies of six spent potlinings with different carbon cathode block grades, amperage regimes and cell designs were conducted at three separate smelters to reveal possible mechanisms causing cathode wear. The microstructure of the cathode samples from the autopsies was investigated by optical and electron microscopy and x-ray computed tomography, while the composition of the solid bath at the surface and in the interior pores was investigated by x-ray diffraction and electron microscopy. The present findings revealed that the cathode surface was characterized by a wear pattern resembling pitting corrosion, and it is discussed that the observed variations in the bath chemistry play a major role in the wear mechanism and the pitting of the surface. A hypothesis involving initiation and termination of the main reaction causing the cathode wear is proposed based on the effect of the consumption of aluminium fluoride in the molten bath layer between the carbon and the molten aluminium pad, resulting in partial solidification of the bath and spatial variation of the current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Rafiei, F. Hiltmann, M. Hyland, B. James, and B. Welch, Light Met. 2001, 747 (2001).

    Google Scholar 

  2. F. Gao, N. Feng, J. Yang, Q. Niu, H. He, and L. Han, Light Met. 2012, 1355 (2012).

    Google Scholar 

  3. M. Sørlie and H.A. Øye, Cathodes in Aluminium Electrolysis, 3rd ed. (Düsseldorf: Aluminium-Verlag, 2010).

    Google Scholar 

  4. A.T. Tabereaux, J.H. Brown, I.J. Eldridge, and T.R. Alcorn, Light Met. 1999, 187 (1999).

    Google Scholar 

  5. P. Reny and S. Wilkening, Light Met. 2000, 399 (2000).

    Google Scholar 

  6. S. Senanu, T. Grande, and A.P. Ratvik, ICSOBA 41, 787 (2016).

    Google Scholar 

  7. S. Senanu, C. Schøning, S. Rørvik, Z.H. Wang, A.P. Ratvik, and T. Grande, Light Met. 2017, 561 (2017).

    Google Scholar 

  8. S. Wilkening, P. Reny, and B. Murphy, Light Met. 2005, 367 (2005).

    Google Scholar 

  9. J.M. Dreyfus and L. Joncourt, Light Met. 1999, 199 (1999).

    Google Scholar 

  10. K. Tschöpe, A. Støre, E. Skybakmoen, A. Solheim, T. Grande, and A.P. Ratvik, Light Met. 2013, 1251 (2013).

    Google Scholar 

  11. P. Patel, M. Hyland, and F. Hiltmann, Light Met. 2005, 757 (2005).

    Google Scholar 

  12. L.P. Lossius and H.A. Øye, Metall Trans B 31, 1213 (2000).

    Article  Google Scholar 

  13. E.F. Siew, T. Ireland-Hay, G.T. Stephens, J.J.J. Chen, and M.P. Taylor, Light Met. 2005, 763 (2005).

    Google Scholar 

  14. S. Senanu, T. Grande, and A.P. Ratvik, ICSOBA 43, 643 (2018).

    Google Scholar 

  15. M. Sørlie, J. Hvistendahl, and H.A. Oye, Light Met. 1993, 299 (1993).

    Google Scholar 

  16. M. McClung and R. Zerkle, Light Met. 2004, 213 (2004).

    Google Scholar 

  17. R. Jeltsch, Light Met. 2009, 1079 (2009).

    Google Scholar 

  18. K. Tschöpe, C. Schøning, J. Rutlin, and T. Grande, Metall Trans B 43, 290 (2012).

    Article  Google Scholar 

  19. K. Tschöpe, C. Schøning, and T. Grande, Light Met. 2009, 1085 (2009).

    Google Scholar 

  20. E. Skybakmoen, S. Rørvik, A. Solheim, K.R. Holm, P. Tiefenbach, and Ø. Østrem, Light Met. 2011, 1061 (2011).

    Google Scholar 

  21. J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, and A. Sterten, Aluminium Electrolysis: Fundamentals of the Hall–Héroult Process, 3rd ed. (Düsseldorf: Aluminium-Verlag Marketing, 2001).

    Google Scholar 

  22. D.F. Craig and J.J. Brown, J. Am. Ceram. Soc. 63, 254 (1980).

    Article  Google Scholar 

  23. S. Wilkening and P. Reny, Light Met. 2004, 597 (2004).

    Google Scholar 

  24. R. Ødegard, A. Sterten, and J. Thonstad, Met Trans B 19, 449 (1988).

    Article  Google Scholar 

  25. K. Tschöpe, A. Støre, A. Solheim, E. Skybakmoen, T. Grande, and A.P. Ratvik, JOM 65, 1403 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Norwegian Research Council and the partners Hydro, Alcoa, Elkem Carbon and Skamol through the project “CaRMa—Reactivity of Carbon and Refractory Materials Used in Metal Production Technology” is acknowledged (Grant No. 236665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Petter Ratvik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senanu, S., Wang, Z., Ratvik, A.P. et al. Carbon Cathode Wear in Aluminium Electrolysis Cells. JOM 72, 210–217 (2020). https://doi.org/10.1007/s11837-019-03717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03717-z

Navigation