Skip to main content
Log in

Local Ratcheting Phenomena in the Cyclic Behavior of Polycrystalline Tantalum

  • Multiscale Computational Strategies for Heterogeneous Materials with Defects: Coupling Modeling with Experiments and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A direct numerical simulation of the cyclic response of a 250-grain polycrystalline aggregate over more than 1000 cycles is presented, being one of the few available simulations including a significant number of cycles. It provides unique results on the evolution of the accumulated plastic strain and ratcheting phenomena inside the grains. Even though the average stress–strain response stabilizes after 500 cycles, unlimited ratcheting is observed at some locations close to grain boundaries and triple junctions. A clear surface effect of the ratcheting behavior is evidenced based on an appropriate combination of Dirichlet, Neumann, and periodic boundary conditions. The magnitude of the ratcheting indicator is found to be significantly higher at the free surface than in the middle section of the aggregate. Both single- and polycrystalline samples of pure tantalum are tested at room temperature for identification of the parameters in the crystal plasticity model. Special attention is dedicated to modeling the static strain aging effects observed in this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Barbe, S. Forest, and G. Cailletaud, Int. J. Plastic. 17, 537 (2001).

  2. A. Hor, N. Saintier, C. Robert, T. Palin-Luc, and F. Morel, Int. J. Fatigue 67, 151 (2014).

    Article  Google Scholar 

  3. D.L. McDowell, Mater. Sci. Eng. A 468, 4 (2007).

    Article  Google Scholar 

  4. H. Proudhon, J. Li, F. Wang, A. Roos, V. Chiaruttini, and S. Forest, Int. J. Fatigue 82, 238 (2016).

    Article  Google Scholar 

  5. S. Basseville, G. Cailletaud, T. Ghidossi, Y. Guilhem, E. Lacoste, H. Proudhon, L. Signor, and P. Villechaise, Mater. Sci. Eng. A 696, 122 (2017).

    Article  Google Scholar 

  6. F. Šiška, S. Forest, P. Gumbsch, and D. Weygand, Modell. Simul. Mater. Sci. Eng. 15, S217 (2007).

    Article  Google Scholar 

  7. H. Lim, H.J. Bong, S.R. Chen, T.M. Rodgers, C.C. Battaile, and J.M.D. Lane, JOM 68, 1427 (2016).

    Article  Google Scholar 

  8. H. Lim, R. Dingreville, L.A. Deibler, T.E. Buchheit, and C.C. Battaile, Comput. Mater. Sci. 117, 437 (2016).

    Article  Google Scholar 

  9. D. Colas, E. Finot, S. Forest, S. Flouriot, M. Mazière, and T. Paris, Mater. Sci. Eng. A 615, 283 (2014).

    Article  Google Scholar 

  10. W. Wasserbach, Work-Hardening and Dislocation Behaviour of Tantalum and Tantalum Alloys (Metals and Materials Society, The Minerals, 1996).

    Google Scholar 

  11. M.N. Norlain, Comportement mécanique du tantale, texture et recristallisation. PhD thesis, unpublished (1999).

  12. C. Kerisit, Analyse de recristallisation statique du tantale déformé à froid pour une modélisation en champ moyen. PhD thesis, Ecole Nationale Supérieure de Mines de Paris (2012).

  13. F. Buy, Etude expérimentale et modélisation du comportement plastique du tantale. Prise en compte de la vitesse de déformation et de l’histoire de chargement. PhD thesis, Université de Metz (1996).

  14. S. Frénois, Modélisation polycristalline du comportement mécanique du tantale. Application à la mise en forme par hydroformage. PhD thesis, Centrale Paris (2001).

  15. Y. Guilhem, S. Basseville, F. Curtit, J.M. Stephan, and G. Cailletaud, Comput. Mater. Sci. 70, 150 (2013).

    Article  Google Scholar 

  16. J. Cheng, A. Shahba, and S. Ghosh, Comput. Mech. 57, 733 (2016).

    Article  MathSciNet  Google Scholar 

  17. F. El Houdaigui, S. Forest, A.-F. Gourgues, and D. Jeulin, On the size of the representative volume element for isotropic elastic polycrystalline copper, in IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, ed. by Q.S. Zheng, Y. Bai, Y.G. Wei (Springer, Beijing, China, 2007), pp. 171–180.

  18. F. Barbe, R. Quey, A. Musienko, and G. Cailletaud, Mech. Res. Commun. 36, 762 (2009).

    Article  Google Scholar 

  19. A. Zeghadi, F. Nguyen, S. Forest, A.-F. Gourgues, and O. Bouaziz, Philos. Mag. 87, 1401 (2007).

    Article  Google Scholar 

  20. A. Zeghadi, S. Forest, A.-F. Gourgues, and O. Bouaziz, Philos. Mag. 87, 1425 (2007).

    Article  Google Scholar 

  21. K.S. Zhang, J.W. Ju, Y.L. Bai, and W. Brocks, Mech. Mater. 85, 16 (2015).

    Article  Google Scholar 

  22. M. Bouchedjra, T. Kanit, C. Boulemia, A. Amrouche, and M. El Amine Belouchrani, Eur. J. Mech. A Solids 72, 1 (2018).

    Article  Google Scholar 

  23. T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003).

    Article  Google Scholar 

  24. C. Gerard, Mesures de champs et identification de modèles de plasticité cristalline. PhD thesis, Université Paris 13 (2008).

  25. Y. Guilhem, S. Basseville, F. Curtit, J.M. Stephan, and G. Cailletaud, Int. J. Fatigue 32, 1748 (2010).

    Article  Google Scholar 

  26. J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, and M. Blétry, Non-Linear Mechanics of Materials. Solid Mechanics and Its Applications, vol. 167 (Springer, Berlin, 2009).

  27. L. Méric and G. Cailletaud, J. Eng. Mater. Technol. 113, 171 (1991).

    Article  Google Scholar 

  28. V. Eyraud, M.H. Nadal, and C. Gondard, Ultrasonics 38, 438 (2000).

    Article  Google Scholar 

  29. T. Hoc, J. Crépin, L. Gélébart, and A. Zaoui, Acta Mater. 51, 5477 (2003).

    Article  Google Scholar 

  30. H. Lim, J.D. Carroll, C.C. Battaile, T.E. Buchheit, B.L. Boyce, and C.R. Weinberger, Int. J. Plast. 60, 1 (2015).

    Article  Google Scholar 

  31. F. Kroupa, Plastic deformation of BCC metals with special reference to slip geometry (Ecole d’été de Pont-à-Mousson, Nancy, 1967).

  32. V. Vitek, Cryst. Lattice Defects 5, 1 (1974).

    Google Scholar 

  33. C. Hennessey, G.M. Castelluccio, and D.L. McDowell, Mater. Sci. Eng. A 687, 241 (2017).

    Article  Google Scholar 

  34. P. McCormick, Acta Metall. 36, 3061 (1998).

    Article  Google Scholar 

  35. S. Zhang, P. McCormick, and Y. Estrin, Acta Mater. 49, 1087 (2000).

    Article  Google Scholar 

  36. S. Graff, S. Forest, J.L. Strudel, C. Prioul, P. Pilvin, and J.L. Bechade, Mater. Sci. Eng. A 387–389, 181 (2004).

    Article  Google Scholar 

  37. M. Marchenko, M. Mazière, S. Forest, and J.L. Strudel, Int. J. Plast. 85, 1 (2016).

    Article  Google Scholar 

  38. S. Ren, M. Mazière, S. Forest, T. F. Morgeneyer, and G. Rousselier, C. R. Méc. 345:908, (2017).

  39. Z-set package. Non-Linear Material & Structure Analysis Suite. www.zset-software.com (2013).

  40. H. Lim, J.D. Carroll, C.C. Battaile, B.L. Boyce, and C.R. Weinberger, Int. J. Mech. Sci. 92, 98 (2015).

    Article  Google Scholar 

  41. A. Marais, M. Mazière, S. Forest, A. Parrot, and P. Le Delliou, Philos. Mag. 92, 3589 (2012).

    Article  Google Scholar 

  42. H.D. Wang, C. Berdin, M. Mazière, S. Forest, C. Prioul, A. Parrot, and P. Le-Delliou, Scr. Mater. 64, 430 (2011).

    Article  Google Scholar 

  43. L. Allais, M. Bornert, T. Bretheau, D. Caldemaison, Acta Metall. Mater. 42, 3865 (1994).

    Article  Google Scholar 

  44. S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  45. A.F. Bower and K.L. Johnson, J. Mech. Phys. Solids 37, 471 (1989).

    Article  Google Scholar 

  46. D.L. McDowell, Int. J. Plast. 11, 397 (1995).

    Article  Google Scholar 

  47. M. Zhang, R.W. Neu, and D.L. McDowell, Int. J. Fatigue 31, 1397 (2009).

    Article  Google Scholar 

  48. M. Abdel-Karim and N. Ohno, Int. J. Plast. 16, 225 (2000).

    Article  Google Scholar 

  49. S. Bari and T. Hassan, Int. J. Plast. 16, 381 (2000).

    Article  Google Scholar 

  50. J.L. Chaboche and J. Lemaitre, Mécanique des matériaux solides. Éd. 3. Dunod (2008).

  51. S. Sinha and S. Ghosh, Int. J. Fatigue 28, 1690 (2006).

    Article  Google Scholar 

  52. L. Priester, Grain Boundaries: From Theory to Engineering. Springer Series in Materials Science, vol. 172, 1st ed. (Springer, Berlin, 2013).

  53. J. Tong, L.G. Zhao, and B. Lin, Int. J. Fatigue 46, 49 (2013).

    Article  Google Scholar 

  54. D. Colas, Approche multi-échelle du vieillissement et du comportement mécanique cyclique dans le tantale (PhD, Mines ParisTech, 2013).

  55. S. Manchiraju, M. Asai, and S. Ghosh, J. Strain Anal. Eng. Des. 42, 183 (2007).

    Article  Google Scholar 

  56. H. Lim, H.J. Bong, S.R. Chen, T.M. Rodgers, C.C. Battaile, and J.M.D. Lane, Mater. Sci. Eng. A 730, 50 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colas, D., Finot, E., Flouriot, S. et al. Local Ratcheting Phenomena in the Cyclic Behavior of Polycrystalline Tantalum. JOM 71, 2586–2599 (2019). https://doi.org/10.1007/s11837-019-03539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03539-z

Navigation