Skip to main content
Log in

Composition-Dependent Microstructure-Property Relationships of Fe and Al Modified Ti-12Cr (wt.%)

  • Composition-Processing-Microstructure-Property Relationships of Titanium Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

β-Titanium (Ti) alloys have applications in several industries (e.g. aerospace, automotive, and biomedical) where material performance requirements vary widely. To tailor the microstructure and mechanical properties of β-Ti alloys for various applications, it is critical to understand the influence of individual alloying elements. Toward this goal, we investigated the effect of individual alloying additions on the microstructure and resultant mechanical properties of four model β-Ti alloys: Ti-12Cr, Ti-12Cr-3Al, Ti-12Cr-1Fe, and Ti-12Cr-1Fe-3Al (wt.%). The microstructures of these alloys were studied using x-ray diffraction, electron microscopy, and atom probe tomography. The mechanical properties were analyzed via Vickers and Rockwell hardness measurements and tensile testing. The addition of 1 wt.% Fe resulted in an approximate 5% increase in elongation-to-failure (εf), while the addition of 3 wt.% Al did not appear to significantly affect εf. The addition of Fe and Al decreased the yield and ultimate tensile strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.L. Nyakana, J.C. Fanning, and R.R. Boyer, J. Mater. Eng. Perform. 14, 799 (2005).

    Article  Google Scholar 

  2. R. Kolli and A. Devaraj, Metals 8, 506 (2018).

    Article  Google Scholar 

  3. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning, JOM 67, 1281 (2015).

    Article  Google Scholar 

  4. R.R. Boyer and R.D. Briggs, J. Mater. Eng. Perform. 14, 681 (2005).

    Article  Google Scholar 

  5. K. Faller and F.H.S. Froes, JOM 53, 27 (2001).

    Article  Google Scholar 

  6. A.R. Morris, Deslination 31, 387 (1979).

    Article  Google Scholar 

  7. M. Niinomi and C.J. Boehlert, in Advances in Metallic Biomaterials, chap. 8, vol. 3 (2015), pp. 179–213. https://doi.org/10.1007/978-3-662-46836-4_8.

  8. F.H. Froes, H. Friedrich, J. Kiese, and D. Bergoint, JOM 56, 40 (2004).

    Article  Google Scholar 

  9. W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed. (New York: McGraw-Hill, 1993), pp. 411–457.

    Google Scholar 

  10. G. Lütjering and J.C. Williams, Titanium, 2nd ed. (Berlin: Springer, 2007).

    Google Scholar 

  11. M. Ikeda, S. Komatsu, M. Ueda, and A. Suzuki, Mater. Trans. 45, 1566 (2004).

    Article  Google Scholar 

  12. L.M. Gammon, R.D. Briggs, J.M. Packard, K.W. Batson, R. Boyer, and C.W. Domby, ASM Handbook, vol. 9, pp. 899–917. https://doi.org/10.1361/asmhba0003779.

  13. A. Devaraj, D.E. Perea, J. Liu, L.M. Gordon, T.J. Prosa, P. Parikh, D.R. Diercks, S. Meher, R.P. Kolli, Y.S. Meng, and S. Thevuthasan, Int. Mater. Rev. 63, 68 (2018).

    Article  Google Scholar 

  14. S. Nag, R. Banerjee, J.Y. Hwang, M. Harper, and H.L. Fraser, Philos. Mag. 89, 535 (2009).

    Article  Google Scholar 

  15. E04 Committee, Test Methods for Determining Average Grain Size (ASTM International, n.d.).

  16. W. Zhou, R.P. Apkarian, Z.L. Wang, and D. Joy, Scanning Microscopy for Nanotechnology, ed. W. Zhou and Z.L. Wang (New York, NY: Springer, 2006).

    Google Scholar 

  17. A. Devaraj, V.V. Joshi, A. Srivastava, S. Manandhar, V. Moxson, V.A. Duz, and C. Lavender, Nat. Commun. 7, 11176 (2016).

    Article  Google Scholar 

  18. Y. Chang, A.J. Breen, Z. Tarzimoghadam, P. Kürnsteiner, H. Gardner, A. Ackerman, A. Radecka, P.A.J. Bagot, W. Lu, T. Li, E.A. Jägle, M. Herbig, L.T. Stephenson, M.P. Moody, D. Rugg, D. Dye, D. Ponge, D. Raabe, and B. Gault, Acta Mater. 150, 273 (2018).

    Article  Google Scholar 

  19. R.P. Kolli, Adv. Struct. Chem. Imaging 3, 10 (2017). https://doi.org/10.1186/s40679-017-0043-4.

    Article  Google Scholar 

  20. B. Gault, eds., Atom Probe Microscopy (New York: Springer, 2012).

    Google Scholar 

  21. J.M. Cairney, K. Rajan, D. Haley, B. Gault, P.A.J. Bagot, P.-P. Choi, P.J. Felfer, S.P. Ringer, R.K.W. Marceau, and M.P. Moody, Ultramicroscopy 159, 324 (2015).

    Article  Google Scholar 

  22. A. Devaraj, T.C. Kaspar, S. Ramanan, S. Walvekar, M.E. Bowden, V. Shutthanandan, and R.J. Kurtz, J. Appl. Phys. 116, 193512 (2014).

    Article  Google Scholar 

  23. A. Devaraj, M. Gu, R. Colby, P. Yan, C.M. Wang, J.M. Zheng, J. Xiao, A. Genc, J.G. Zhang, I. Belharouak, D. Wang, K. Amine, and S. Thevuthasan, Nat. Commun. 6, 8104 (2015).

    Article  Google Scholar 

  24. M.P. Moody, L.T. Stephenson, A.V. Ceguerra, and S.P. Ringer, Microsc. Res. Tech. 71, 542 (2008).

    Article  Google Scholar 

  25. D. Doraiswamy and S. Ankem, Acta Mater. 51, 1607 (2003).

    Article  Google Scholar 

  26. S. Hanada and O. Izumi, Metall. Trans. A 18A, 265 (1987).

    Article  Google Scholar 

  27. A. Jaworski and S. Ankem, J. Mater. Eng. Perform. 14, 755 (2005).

    Article  Google Scholar 

  28. M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, and E.V. Pereloma, Acta Mater. 84, 124 (2015).

    Article  Google Scholar 

  29. X.L. Wang, L. Li, W. Mei, W.L. Wang, and J. Sun, Mater. Charact. 107, 149 (2015).

    Article  Google Scholar 

  30. R.P. Kolli, W.J. Joost, and S. Ankem, JOM 67, 1273 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based in part on work supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664. The funding for the alloy processing, mechanical testing metallographic preparation and XRD was supported by National Science Foundation Division of Material Research (Grant No. DMR1607942) through the Metals and Metallic Nanostructures (MMN) program. A.D. would like to acknowledge the funding support from Pacific Northwest National Laboratories laboratory directed research and development (LDRD) program as a part of physical and computational sciences directorate seed LDRD. The microstructural characterization using SEM and APT was performed using facilities at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors also acknowledge the assistance of Ms. Afnan Albatati with the hardness measurements and Dr. Vahid Khademi for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. J. Boehlert or A. Devaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballor, J., Ikeda, M., Kautz, E.J. et al. Composition-Dependent Microstructure-Property Relationships of Fe and Al Modified Ti-12Cr (wt.%). JOM 71, 2321–2330 (2019). https://doi.org/10.1007/s11837-019-03467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03467-y

Navigation