Skip to main content
Log in

Simulation of Solidification Process of Metallic Gallium and Its Application in Preparing 99.99999% Pure Gallium

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Computer simulations were performed on the spontaneous solidification and artificial intervention solidification processes of liquid gallium (Ga) by using molecular dynamics. The formation and evolution mechanism of the microstructure of liquid Ga under different solidification conditions were systematically studied using a combination of microstructural methods including the pair distribution function, bond-type index, and cluster-type index. The simulation results revealed that spontaneous homogeneous nucleation started from icosahedrons and defective icosahedrons. Artificial intervention can effectively control the thermostatic crystallization processes of liquid Ga, favoring crystal formation with large grains. The simulation results explain important experimental phenomena and the solidification theory of Ga smelting by the crystallization method from the microscopical point of view. We tested experimentally the process conditions for high-purity Ga smelting by the crystallization method as obtained from our simulations, resulting in successful preparation of metallic Ga with purity of 99.99999%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.N. Løvik, E. Restrepo, and D.B. Müller, Environ. Sci. Technol. 49, 5704 (2015).

    Article  Google Scholar 

  2. F. Lu, T. Xiao, J. Lin, Z. Ning, Q. Long, L. Xiao, F. Huang, W. Wang, Q. Xiao, X. Lan, and H. Chen, Hydrometallurgy 174, 105 (2017).

    Article  Google Scholar 

  3. E. Alonso, A.M. Sherman, T.J. Wallington, M.P. Everson, F.R. Field, R. Roth, and R.E. Kirchain, Environ. Sci. Technol. 46, 3406 (2012).

    Article  Google Scholar 

  4. Z. Liu and H. Li, Hydrometallurgy 155, 29 (2015).

    Article  Google Scholar 

  5. Z. Lu, F. Xia, Q. Ye, X. Xiang, and X. Bing, J. Hazard. Mater. 299, 388 (2015).

    Article  Google Scholar 

  6. H.T. Luong and J.C. Liu, Sep. Purif. Technol. 132, 115 (2014).

    Article  Google Scholar 

  7. D. Raabe, Computational Materials Science: The Simulation of Materials, Micro Structures and Properties (Weinheim: Wiley-VCH, 1998), pp. 87–110.

    Book  Google Scholar 

  8. Y. Shibuta, M. Ohno, and T. Takaki, JOM 67, 1793 (2015).

    Article  Google Scholar 

  9. J. Wang, JOM 67, 1515 (2015).

    Article  Google Scholar 

  10. F. Rahmani, J. Jeon, S. Jiang, and S. Nouranian, J. Nanopart. Res. 20, 133 (2018).

    Article  Google Scholar 

  11. Y.H. Wen, R. Huang, G.F. Shao, and S.G. Sun, J. Phys. Chem. Lett. 8, 4273 (2017).

    Article  Google Scholar 

  12. X.L. Cheng, J.P. Zhang, H. Zhang, and F. Zhao, J. Appl. Phys. 114, 84310 (2013).

    Article  Google Scholar 

  13. X. Yi, R. Liu, Z. Tian, Z. Hou, X. Li, and Q. Zhou, Trans. Nonferrous Met. Soc. China 18, 33 (2008).

    Article  Google Scholar 

  14. S. Wang and S.K. Lai, J. Phys. F: Metal. Phys. 10, 2717 (1980).

    Article  Google Scholar 

  15. L. Wang, X. Bian, and H. Li, Acta. Phys. Chim. Sin. 16, 825 (2000).

    Google Scholar 

  16. J.P. Zhang, Y.Y. Zhang, E.P. Wang, C.M. Tang, X.L. Cheng, and Q.H. Zhang, Chin. Phys. B 25, 36102 (2016).

    Article  Google Scholar 

  17. J.D. Honeycut and H.C. Andersen, J. Phys. Chem. 91, 4950 (1987).

    Article  Google Scholar 

  18. D.W. Qi and S. Wang, Phys. Rev. B 44, 884 (1991).

    Article  Google Scholar 

  19. K. Lochmann, A. Anikeenko, A. Elsner, N. Medvedev, and D. Stoyan, Eur. Phys. J. B 53, 67 (2006).

    Article  Google Scholar 

  20. Y. Qi, T. Çağin, W.L. Johnson, and W.A. Goddard, J. Chem. Phys. 115, 385 (2001).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation of China (Nos. 51834004, 51774076 and 51704063) and Fundamental Research Funds for the Central Universities (No. N172507011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, K., Li, Y., Zhao, Q. et al. Simulation of Solidification Process of Metallic Gallium and Its Application in Preparing 99.99999% Pure Gallium. JOM 71, 737–743 (2019). https://doi.org/10.1007/s11837-018-3259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3259-4

Navigation