Skip to main content
Log in

The Effect of Additives on Extraction of Ni, Fe and Co from Nickel Laterite Ores

  • Technical Communication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As nickel sulfide deposits are exhausted, it becomes necessary to mine and process low-grade laterite ores to satisfy the need for nickel production. To achieve an efficient extraction of Ni, Fe and Co, additives such as chlorides, sulfur and sulfates, alkali oxides, fluorides, sodium carbonate and sodium hydroxide are introduced into the extraction process, and are applied in the reduction roasting-magnetic separation and chloridizing/sulfating/alkali roasting followed by a leaching process. In this paper, previously reported studies on the extraction of Ni, Fe and Co from nickel laterite ores have been reviewed with an emphasis on the additives’ effect and reaction mechanisms. Although these additives significantly improve the enrichment effect, there is a need for further research on reaction mechanisms, particularly with regard to hydrolysis of chlorides that generate HCl. The development of efficient additives that are environmentally friendly with low corrosivity and low cost should also be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. 29

Fig. 3
Fig. 4

Adapted from Ref. 30

Fig. 5

Reprinted with permission from Ref. 42

Fig. 6

Reprinted with permission from Ref. 44

Fig. 7

Reprinted with permission from Ref. 25

Fig. 8

Reprinted with permission from Ref. 46

Fig. 9

Reprinted with permission from Ref. 51

Fig. 10

Reprinted with permission from Ref. 53

Fig. 11

Reprinted with permission from Ref. 62

Fig. 12

Similar content being viewed by others

References

  1. C.A. Pickles, Miner. Eng. 17, 775 (2004).

    Article  Google Scholar 

  2. N. Zhang, Mark Econ. Price 33, 28 (2015).

    Google Scholar 

  3. M. Landers, M. Gräfe, R. Gilkes, M. Saunders, and M. Wells, Aust. J. Earth Sci. 58, 745 (2011).

    Article  Google Scholar 

  4. E. Zevgolis, C. Zografidis, and I. Halikia, Miner. Process. Extr. Metall. Rev. 119, 9 (2010).

    Article  Google Scholar 

  5. D.R. Vletter, Math. Geol. 10, 523 (1978).

    Article  Google Scholar 

  6. B.I. Whittington, J.A. Johnson, L.P. Quan, R.G. McDonald, and D.M. Muir, Hydrometallurgy 70, 47 (2003).

    Article  Google Scholar 

  7. T. Watanabe, S. Ono, H. Arai, and T. Matsumori, Int. J. Miner. Process. 19, 173 (1987).

    Article  Google Scholar 

  8. S. Changer and V.N. Sharma, Hydrometallurgy 7, 315 (1981).

    Article  Google Scholar 

  9. E. Büyükakinci and Y.A. Topkaya, Hydrometallurgy 97, 33 (2009).

    Article  Google Scholar 

  10. S. Kaya and Y.A. Topkaya, Miner. Eng. 24, 1188 (2011).

    Article  Google Scholar 

  11. J. Kim, G. Dodbiba, H. Tanno, K. Okaya, S. Matsuo, and T. Fujita, Miner. Eng. 23, 282 (2010).

    Article  Google Scholar 

  12. K. Quast, A. Otsuki, D. Fornasiero, D.J. Robinson, and J. Addai-Mensah, Miner. Eng. 79, 279 (2015).

    Article  Google Scholar 

  13. P.X. Zhang, Q. Guo, Y.X. Song, J.K. Qu, and T. Qi, Chin. J. Process Eng. 13, 608 (2013).

    Google Scholar 

  14. Y.V. Swamy, B.B. Kar, and J.K. Mohanty, Hydrometallurgy 69, 89 (2003).

    Article  Google Scholar 

  15. N. Rajmohan and K.T. Jacob, Miner. Eng. 5, 235 (1992).

    Article  Google Scholar 

  16. M. Samouhos, M. Taxiarchou, R. Hutcheon, and E. Devlin, Miner. Eng. 34, 19 (2012).

    Article  Google Scholar 

  17. L.B. Sukla, K.M. Swamy, K.L. Narayana, R.N. Kar, and V.V. Panchanadikar, Hydrometallurgy 37, 387 (1995).

    Article  Google Scholar 

  18. C.M. Diaz, C.A. Landolt, A. Vahed, A.E.M. Warner, and J.C. Taylor, JOM 40, 28 (1988).

    Article  Google Scholar 

  19. J. Nayak, Trans. Indian Inst. Metals 38, 241 (1985).

    Google Scholar 

  20. J.K. Kyle, in Alta 2010 Nickel/Cobalt/Copper Conference, Perth, (2010).

  21. R.G. McDonald and B.I. Whittington, Hydrometallurgy 91, 35 (2008).

    Article  Google Scholar 

  22. C.Y. Wang, F. Yin, Y.Q. Chen, Z. Wang, and J. Wang, Chin. J. Nonferrous Metals 18, s1 (2008).

    Article  Google Scholar 

  23. K. Okamoto, Y. Ueda, and F. Noguchi, Kyushu Inst. Technol. Acad. Repos. 1, 23 (1971).

    Google Scholar 

  24. W.R. Liu, X.H. Li, Q.Y. Hu, Z.X. Wang, K.Z. Gu, J.H. Li, and L.X. Zhang, Trans. Nonferrous Met. Soc. China 20, 82 (2010).

    Article  Google Scholar 

  25. J. Lu, S.J. Liu, J. Shangguan, W.G. Du, F. Pan, and S. Yang, Miner. Eng. 49, 154 (2013).

    Article  Google Scholar 

  26. C.C. Lin, J.L. Zhang, D.H. Huang, R. Mao, and J.G. Shao, J. Univ. Sci. Technol. B 33, 270 (2011).

    Google Scholar 

  27. M.J. Rao, G.H. Li, T. Jian, J. Luo, Y.B. Zhang, and X.H. Fan, JOM 65, 1573 (2013).

    Article  Google Scholar 

  28. G. Senanayake, J. Childs, B.D. Akerstrom, and D. Pugaev, Hydrometallurgy 110, 13 (2011).

    Article  Google Scholar 

  29. S.W. Zhou, Y.G. Wei, B. Li, H. Wang, B.Z. Ma, and C.Y. Wang, Metall. Mater. Trans. B 4, 30 (2016).

    Google Scholar 

  30. S.W. Zhou, Y.G. Wei, B. Li, H. Wang, B.Z. Ma, and C.Y. Wang, Sci. Rep. UK 6, 29061 (2016).

    Article  Google Scholar 

  31. M. Kwatara, J. Tayabally, E. Peek, and R. Schonewille, in TMS 2011, San Diego (2011).

  32. X.H. Li, L.X. Zhang, Q.Y. Hu, and Z.X. Wang, Chin. J. Nonferrous Metals 21, 1728 (2011).

    Article  Google Scholar 

  33. K. Okamoto, Y. Ueda, and F. Noguchi, Kyushu Inst. Technol. Acad. Repos. 1, 41 (1971).

    Google Scholar 

  34. C.Y. Wang, Min. Metall. 6, 55 (1997).

    Google Scholar 

  35. X.L. Zhang (Master’s Thesis, Central South University, 2011).

  36. W.H. Lu, Z.L. Yin, Z.X. Liu, and Liu, J. Chin. Rare Earth Soc. 30, 802 (2012).

    Article  Google Scholar 

  37. Y. Takahashi, K. Kojima, and K. Nagano, J. Min. Metall. Inst. 84, 31 (1968).

    Google Scholar 

  38. Z.J. He, Z.X. Wang, X.H. Li, Q.Y. Hu, and L.X. Zhang, Metall. Phys. Chem. Conf. China 30, 734 (2012).

    Google Scholar 

  39. F.M. Fu, Q.Y. Hu, X.H. Li, Z.X. Wang, J.H. Li, and L.J. Li, J. Cent. South Univ. 41, 2096 (2010).

    Google Scholar 

  40. C.L. Fan, X.J. Zhai, Y. Fu, Y.F. Chang, B.C. Li, and T.A. Zhang, Hydrometallurgy 105, 191 (2010).

    Article  Google Scholar 

  41. J.H. Li, Y.Y. Li, Y. Gao, Y.F. Zhang, and Z.F. Chen, Int. J. Miner. Process. 148, 23 (2016).

    Article  Google Scholar 

  42. M. Valix and W.H. Cheung, Miner. Eng. 15, 523 (2002).

    Article  Google Scholar 

  43. T.C. Sun, M. Jiang, Z.G. Liu, N. Liu, S.Y. Zhang, J. Kou, and C.Y. Xu, J. China U. Min. Technol. 42, 838 (2013).

    Google Scholar 

  44. M. Jiang, T.C. Sun, Z.G. Liu, J. Kou, N. Liu, and A.Y. Zhang, Int. J. Miner. Process. 123, 32 (2013).

    Article  Google Scholar 

  45. J. Lu, S.J. Liu, J. Shangguan, W.G. Du, F. Pan, and S. Yang, Chem. Ind. Eng. Prog. 32, 2308 (2013).

    Google Scholar 

  46. S. Yang, W.G. Du, P.Z. Shi, J. Shangguan, S.J. Liu, C.H. Zhou, P. Chen, Q. Zhang, and H.L. Fan, PLoS ONE 11, 1 (2016).

    Google Scholar 

  47. D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, and G.L. Zheng, Int. J. Miner. Process. 106–109, 1 (2012).

    Google Scholar 

  48. I. Setiawan, S. Harjanto, A. Rustandi, and R. Subagja, IJET 14, 56 (2014).

    Google Scholar 

  49. P.Z. Shi, W.G. Du, S. Yang, S.J. Liu, and J. Shangguan, J. Taiyuan Univ. Technol. 47, 144 (2016).

    Google Scholar 

  50. Z.G. Liu, T.C. Sun, X.P. Wang, and E.X. Gao, Int. J. Min. Metall. Mater. 29, 901 (2015).

    Article  Google Scholar 

  51. M.J. Rao, G.H. Li, X. Zhang, J. Luo, Z.W. Peng, and T. Jiang, Sep. Sci. Technol. 51, 1408 (2016).

    Article  Google Scholar 

  52. G.H. Li, T.M. Shi, M.J. Rao, T. Jiang, and Y.B. Zhang, Miner. Eng. 32, 19 (2012).

    Article  Google Scholar 

  53. M.J. Rao, G.H. Li, X. Zhang, J. Luo, Z.W. Peng, and T. Jiang, Sep. Sci. Technol. 51, 1727 (2016).

    Article  Google Scholar 

  54. G.H. Li, M.J. Rao, T. Jiang, Q.Q. Huang, T.M. Shi, and Y.B. Zhang, Chin. J. Nonferrous Metals 21, 3137 (2011).

    Google Scholar 

  55. G.H. Li, M.J. Rao, T. Jiang, T.M. Shi, and Q.Q. Huang, Chin. J. Nonferrous Metals 22, 274 (2012).

    Google Scholar 

  56. X.D. Pei and Y.J. Qian, Metal Mine 450, 57 (2013).

    Google Scholar 

  57. H.Z. Li and H.J. Guo, Ferro Alloys 238, 21 (2014).

    Google Scholar 

  58. D.H. Huang, J.L. Zhang, R. Mao, and M.M. Cao, Rare Met. 30, 681 (2011).

    Article  Google Scholar 

  59. Y.J. Li, S.F. Li, and Y.X. Han, J. Northeast Univ. 32, 740 (2011).

    Google Scholar 

  60. C. Pan, X.W. Lü, C.G. Bai, E.G. Guo, P. Chen, and M. Liu, J. Cent. South Univ. 45, 16 (2014).

    Google Scholar 

  61. J.T. Gao, Y.T. Zhang, P.Y. Chen, and S.Q. Li, J. Univ. Sci. Technol. B 35, 1289 (2013).

    Google Scholar 

  62. Q. Guo, J.K. Qu, T. Qi, G.Y. Wei, and B.B. Han, Miner. Eng. 19, 825 (2011).

    Article  Google Scholar 

  63. Q. Guo, J.K. Qu, B.B. Han, G.Y. Wei, and T. Qi, Chin. J. Process Eng. 11, 72 (2011).

    Google Scholar 

  64. Q. Guo, J.K. Qu, B.B. Han, G.Y. Wei, P.Y. Zhang, and T. Qi, Trans. Nonferrous Met. Soc. China 24, 3979 (2014).

    Article  Google Scholar 

  65. B.Q. Wang, Q. Guo, J.K. Qu, and T. Qi, Chin. J. Process Eng. 12, 420 (2012).

    Google Scholar 

  66. Q. Guo, J.K. Qu, T. Qi, G.Y. Wei, and B.B. Han, Int. J. Min. Metall. Mater. 19, 100 (2012).

    Article  Google Scholar 

  67. B.Z. Ma, W.J. Yang, Y.L. Pei, C.Y. Wang, and B.J. Jin, Hydrometallurgy 149, 411 (2017).

    Article  Google Scholar 

  68. B.Z. Ma, C.Y. Wang, W.J. Yang, Y.G. Wei, and H. Wang, Chin. J. Rare Earths 41, 429 (2017).

    Google Scholar 

  69. B.Z. Ma, P. Xing, W.J. Yang, C.Y. Wang, Y.Q. Chen, and H. Wang, Metall. Mater. Trans. B 48B, 2037 (2017).

    Article  Google Scholar 

  70. Z.G. Liu, T.C. Sun, and X.P. Wang, Chin. J. Nonferrous Metals 27, 594 (2017).

    Google Scholar 

  71. Z.L. Xue, C.P. Xiao, G.H. Hang, T.Y. Xiong, and Y.C. Xie, J. Chongqing Univ. 40, 43 (2017).

    Google Scholar 

  72. D.Q. Zhu, J. Pan, Q.H. Li, G.L. Zheng, Z.Y. Li, in A Method for Producing High Nickel Concentrate from Low Grade Laterite (China: CN102242252, 2011) (in Chinese).

  73. D.Q. Zhu, G.L. Zheng, J. Pan, Q.H. Li, Y.M. An, J.H. Zhu, and Z.H. Liu, J. Cent. South Univ. 44, 1 (2013).

    Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the National Natural Science Foundation of China (Project Nos. U1302274 and 51304091), and the Scientific and Technological Leading Talent Projects in Yunnan Province (No. 2015HA019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Wei, Y., Zhou, S. et al. The Effect of Additives on Extraction of Ni, Fe and Co from Nickel Laterite Ores. JOM 70, 2365–2377 (2018). https://doi.org/10.1007/s11837-018-3032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3032-8

Navigation