Skip to main content
Log in

Nanoarchitecture Control Enabled by Ionic Liquids

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. X. Liu, Y. Zhang, D. Ge, J. Zhao, Y. Li, and F. Endres, Phys. Chem. Chem. Phys. 14, 5100 (2012).

    Article  Google Scholar 

  2. Y.T. Hsieh, T.I. Leong, C.C. Huang, C.S. Yeh, and I.W. Sun, Chem. Commun. 46, 484 (2010).

    Article  Google Scholar 

  3. A.P. Abbott, G. Frisch, and K.S. Ryder, Annu. Rev. Mater. Res. 43, 335 (2013).

    Article  Google Scholar 

  4. Q. Zhang, K.D.O. Vigier, S. Royer, and F. Jérôme, Chem. Soc. Rev. 41, 7108 (2012).

    Article  Google Scholar 

  5. A. Abbott, J.C. Barron, M. Elhadi, G. Frisch, S.J. Gurman, A.R. Hillman, E.L. Smith, M.A. Mohamoud, and K.S. Ryder, ECS Trans. 16, 47 (2009).

    Article  Google Scholar 

  6. J. Dupont and J.D. Scholten, Chem. Soc. Rev. 39, 1780 (2010).

    Article  Google Scholar 

  7. M.-A. Neouze, J. Mater. Chem. 20, 9593 (2010).

    Article  Google Scholar 

  8. D.V. Wagle, H. Zhao, and G.A. Baker, Acc. Chem. Res. 47, 2299 (2014).

    Article  Google Scholar 

  9. E.L. Smith, A.P. Abbott, and K.S. Ryder, Chem. Rev. 114, 11060 (2014).

    Article  Google Scholar 

  10. J.M. Hartley, C.-M. Ip, G.C.H. Forrest, K. Singh, S.J. Gurman, K.S. Ryder, A.P. Abbott, and G. Frisch, Inorg. Chem. 53, 6280 (2014).

    Article  Google Scholar 

  11. B. Tang and K.H. Row, Monatsh. Chem. 144, 1427 (2013).

    Article  Google Scholar 

  12. R. Kang, J. Liang, B. Liu, and Z. Peng, J. Electrochem. Soc. 161, D534 (2014).

    Article  Google Scholar 

  13. A.C. Wright, M.K. Faulkner, R.C. Harris, A. Goddard, and A.P. Abbott, J. Magn. Magn. Mater. 324, 4170 (2012).

    Article  Google Scholar 

  14. C.-D. Gu, J.-L. Zhang, W.-Q. Bai, Y.-Y. Tong, X.-L. Wang, and J.-P. Tu, J. Electrochem. Soc. 162, D159 (2015).

    Article  Google Scholar 

  15. P.-Y. Chen and I.-W. Sun, Electrochim. Acta 45, 3163 (2000).

    Article  Google Scholar 

  16. N.M. Pereira, C.M. Pereira, J.P. Araújo, and A.F. Silva, J. Electrochem. Soc. 162, D325 (2015).

    Article  Google Scholar 

  17. C.D. Gu, W. Yan, J.L. Zhang, and J.P. Tu, Corros. Sci. 106, 108 (2016).

    Article  Google Scholar 

  18. J. Tam, G. Palumbo, and U. Erb, Materials 9, 27 (2016).

    Article  Google Scholar 

  19. C.D. Gu, X.J. Xu, and J.P. Tu, J. Phys. Chem. C 114, 13614 (2010).

    Article  Google Scholar 

  20. J.-L. Zhang, C.-D. Gu, Y.-Y. Tong, X.-L. Wang, and J.-P. Tu, J. Electrochem. Soc. 162, D313 (2015).

    Article  Google Scholar 

  21. J. Zhang, C. Gu, Y. Tong, W. Yan, and J. Tu, Adv. Mater. Interfaces 3, 1500694 (2016).

    Article  Google Scholar 

  22. C. Gu and J. Tu, Langmuir 27, 10132 (2011).

    Article  Google Scholar 

  23. Y.-H. You, C.-D. Gu, X.-L. Wang, and J.-P. Tu, Int. J. Electrochem. Sci. 7, 12400 (2012).

    Google Scholar 

  24. S. Sangeetha, G.P. Kalaignan, and J.T. Anthuvan, Appl. Surf. Sci. 359, 412 (2015).

    Article  Google Scholar 

  25. A.P. Abbott, K.E. Ttaib, G. Frisch, K.S. Ryder, and D. Weston, Phys. Chem. Chem. Phys. 14, 2443 (2012).

    Article  Google Scholar 

  26. L. Stappers and J. Fransaer, J. Electrochem. Soc. 154, D598 (2007).

    Article  Google Scholar 

  27. R.P. Socha, P. Nowak, K. Laajalehto, and J. Väyrynen, Colloids Surf. A 235, 45 (2004).

    Article  Google Scholar 

  28. T.R. Khan, A. Erbe, M. Auinger, F. Marlow, and M. Rohwerder, Sci. Technol. Adv. Mater. 12, 055005 (2011).

    Article  Google Scholar 

  29. T.R. Khan, A. Vimalanandan, F. Marlow, A. Erbe, M. Rohwerder, and A.C.S. Appl, Mater. Interfaces 4, 6221 (2012).

    Article  Google Scholar 

  30. R. Li, Y. Hou, and J. Liang, Appl. Surf. Sci. 367, 449 (2016).

    Article  Google Scholar 

  31. M. Ganapathi, S.V. Eliseeva, N.R. Brooks, D. Soccol, J. Fransaer, and K. Binnemans, J. Mater. Chem. 22, 5514 (2012).

    Article  Google Scholar 

  32. Y. He, S.C. Wang, F.C. Walsh, W.S. Li, L. He, and P.A.S. Reed, RSC Adv. 5, 42965 (2015).

    Article  Google Scholar 

  33. R. Li, Q. Chu, and J. Liang, RSC Adv. 5, 44933 (2015).

    Article  Google Scholar 

  34. J. Fransaer, E. Leunis, T. Hirato, and J.-P. Celis, J. Appl. Electrochem. 32, 123 (2002).

    Article  Google Scholar 

  35. A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, and K.S. Ryder, Phys. Chem. Chem. Phys. 11, 4269 (2009).

    Article  Google Scholar 

  36. P. Martis, V.S. Dilimon, J. Delhalle, and Z. Mekhalif, Electrochim. Acta 55, 5407 (2010).

    Article  Google Scholar 

  37. J. Maharaja, M. Raja, and S. Mohan, Surf. Eng. 30, 722 (2014).

    Article  Google Scholar 

  38. D.S. Jacob, L. Bitton, J. Grinblat, I. Felner, Y. Koltypin, and A. Gedanken, Chem. Mater. 18, 3162 (2006).

    Article  Google Scholar 

  39. C. Vollmer and C. Janiak, Coord. Chem. Rev. 255, 2039 (2011).

    Article  Google Scholar 

  40. O. Hofft and F. Endres, Phys. Chem. Chem. Phys. 13, 13472 (2011).

    Article  Google Scholar 

  41. D.O. Oseguera-Galindo, R. Machorro-Mejia, N. Bogdanchikova, and J.D. Mota-Morales, Colloid Interface Sci. Commun. 12, 1 (2016).

    Article  Google Scholar 

  42. H. Wender, M.L. Andreazza, R.R.B. Correia, S.R. Teixeira, and J. Dupont, Nanoscale 3, 1240 (2011).

    Article  Google Scholar 

  43. K. Yoshifumi, T. Hiroshi, T. Masahide, O. Tetsuo, and I. Seiji, Chem. Lett. 36, 1130 (2007).

    Article  Google Scholar 

  44. M. Brettholle, O. Hofft, L. Klarhofer, S. Mathes, W. Maus-Friedrichs, S. Zein El Abedin, S. Krischok, J. Janek, and F. Endres, Phys. Chem. Chem. Phys. 12, 1750 (2010).

    Article  Google Scholar 

  45. Y. Katayama, Y. Oshino, N. Ichihashi, N. Tachikawa, K. Yoshii, and K. Toshima, Electrochim. Acta 183, 37 (2015).

    Article  Google Scholar 

  46. A.B. Patil and B.M. Bhanage, Phys. Chem. Chem. Phys. 16, 3027 (2014).

    Article  Google Scholar 

  47. L. Yu, H. Sun, J. He, D. Wang, X. Jin, X. Hu, and G.Z. Chen, Electrochem. Commun. 9, 1374 (2007).

    Article  Google Scholar 

  48. H. Zhang, Y. Lu, C.-D. Gu, X.-L. Wang, and J.-P. Tu, Cryst. Eng. Commun. 14, 7942 (2012).

    Article  Google Scholar 

  49. K.M. Deshmukh, Z.S. Qureshi, K.D. Bhatte, K.A. Venkatesan, T.G. Srinivasan, P.R.V. Rao, and B.M. Bhanage, New J. Chem. 35, 2747 (2011).

    Article  Google Scholar 

  50. L. Wei, B. Lu, M. Sun, N. Tian, Z. Zhou, B. Xu, X. Zhao, and S. Sun, Nano Res. 9, 3547 (2016).

    Article  Google Scholar 

  51. L. Wei, Y.-J. Fan, N. Tian, Z.-Y. Zhou, X.-Q. Zhao, B.-W. Mao, and S.-G. Sun, J. Phys. Chem. C 116, 2040 (2012).

    Article  Google Scholar 

  52. L. Wei, Y.-J. Fan, H.-H. Wang, N. Tian, Z.-Y. Zhou, and S.-G. Sun, Electrochim. Acta 76, 468 (2012).

    Article  Google Scholar 

  53. A. Li, Y. Chen, K. Zhuo, C. Wang, C. Wang, and J. Wang, RSC Adv. 6, 8786 (2016).

    Article  Google Scholar 

  54. H.-G. Liao, Y.-X. Jiang, Z.-Y. Zhou, S.-P. Chen, and S.-G. Sun, Angew. Chem. Int. Ed. 47, 9100 (2008).

    Article  Google Scholar 

  55. S. Stassi, V. Cauda, G. Canavese, D. Manfredi, and C.F. Pirri, Eur. J. Inorg. Chem. 2012, 2669 (2012).

    Article  Google Scholar 

  56. Y. Wang, W. Li, W. Wang, N. Mitsuzak, W. Bao, and Z. Chen, Thin Solid Films 586, 35 (2015).

    Article  Google Scholar 

  57. H. Jia, J. An, X. Guo, C. Su, L. Zhang, H. Zhou, and C. Xie, J. Mol. Liq. 212, 763 (2015).

    Article  Google Scholar 

  58. A. Renjith, A. Roy, and V. Lakshminarayanan, J. Colloid Interface Sci. 426, 270 (2014).

    Article  Google Scholar 

  59. Z. Li, Z. Liu, J. Zhang, B. Han, J. Du, Y. Gao, and T. Jiang, J. Phys. Chem. B 109, 14445 (2005).

    Article  Google Scholar 

  60. H.J. Ryu, L. Sanchez, H.A. Keul, A. Raj, and M.R. Bockstaller, Angew. Chem. Int. Ed. 47, 7639 (2008).

    Article  Google Scholar 

  61. A.P. Abbott, J.C. Barron, G. Frisch, S. Gurman, K.S. Ryder, and A. Fernando, Silva. Phys. Chem. Chem. Phys. 13, 10224 (2011).

    Article  Google Scholar 

  62. Y.-M. Wei, Y.-C. Fu, J.-W. Yan, C.-F. Sun, Z. Shi, Z.-X. Xie, D.-Y. Wu, and B.-W. Mao, J. Am. Chem. Soc. 132, 8152 (2010).

    Article  Google Scholar 

  63. Q. Zhang, A.P. Abbott, and C. Yang, Phys. Chem. Chem. Phys. 17, 14702 (2015).

    Article  Google Scholar 

  64. C. Yang, Q.B. Zhang, M.Y. Gao, Y.X. Hua, and C.Y. Xu, J. Electrochem. Soc. 163, D469 (2016).

    Article  Google Scholar 

  65. M. Starykevich, A.N. Salak, D.K. Ivanou, A.D. Lisenkov, M.L. Zheludkevich, and M.G.S. Ferreira, Electrochim. Acta 170, 284 (2015).

    Article  Google Scholar 

  66. C. Yang, Q.B. Zhang, and A.P. Abbott, Electrochem. Commun. 70, 60 (2016).

    Article  Google Scholar 

  67. S. Zein El Abedin and F. Endres, Chem. Phys. Chem. 13, 250 (2012).

    Article  Google Scholar 

  68. K. Angenendt and P. Johansson, J. Phys. Chem. C 114, 20978 (2010).

    Article  Google Scholar 

  69. K. Angenendt and P. Johansson, J. Phys. Chem. B 115, 6352 (2011).

    Article  Google Scholar 

  70. P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, K. Van Hecke, L. Van Meervelt, B. Kirchner, and K. Binnemans, J. Phys. Chem. B 110, 20577 (2006).

    Article  Google Scholar 

  71. N. Hai, J. Furrer, I. Gjuroski, M. Bircher, M. Cascella, and P. Broekmann, J. Electrochem. Soc. 160, 7808 (2013).

    Google Scholar 

  72. G. Lemaire, P. Hébant, and G.S. Picard, J. Mol. Struct. 419, D3158 (1997).

    Article  Google Scholar 

  73. B. Bozzini, L. D’Urzo, C. Mele, and V. Romanello, J. Phys. Chem. C 112, 1 (2008).

    Google Scholar 

  74. A.S. Pensado and A.A.H. Pádua, Angew. Chem. Int. Ed. 50, 14381 (2011).

    Article  Google Scholar 

  75. J.A. Hammons, T. Muselle, J. Ustarroz, M. Tzedaki, M. Raes, A. Hubin, and H. Terryn, J. Phys. Chem. C 117, 1534 (2013).

    Article  Google Scholar 

  76. J.A. Hammons, J. Ustarroz, T. Muselle, A.A.J. Torriero, H. Terryn, K. Suthar, and J. Ilavsky, J. Phys. Chem. C 120, 8683 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Murdoch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murdoch, H.A., Limmer, K.R. & Labukas, J.P. Nanoarchitecture Control Enabled by Ionic Liquids. JOM 69, 1034–1040 (2017). https://doi.org/10.1007/s11837-017-2354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2354-2

Keywords

Navigation