Skip to main content
Log in

Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Achilles’ heel of additively manufactured Ti-6Al-4V by selective laser melting (SLM) is its inferior mechanical properties compared with its wrought (forged) counterparts. Acicular α′ martensite resulted from rapid cooling by SLM is primarily responsible for high strength but inadequate tensile ductility achieved in the as-fabricated state. This study presents a solution to eliminating the adverse effect of the nonequilibrium α′ martensite. This is achieved by enabling in situ martensite decomposition into a novel ultrafine (200–300 nm) lamellar (α + β) microstructure via the selection of an array of processing variables including the layer thickness, energy density, and focal offset distance. The resulting tensile elongation reached 11.4% while the yield strength was kept above 1100 MPa. These properties compare favorably with those of mill-annealed Ti-6Al-4V consisting of globular α and β. The fatigue life of SLM-fabricated Ti-6Al-4V with an ultrafine lamellar (α + β) structure has approached that of the mill-annealed counterparts and is much superior to that of SLM-fabricated Ti-6Al-4V with α′ martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Vandenbroucke and J.P. Kruth, Rapid Prototyp. J. 13, 196 (2007).

    Article  Google Scholar 

  2. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth, Acta Mater. 58, 3303 (2010).

    Article  Google Scholar 

  3. L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, and K. Wissenbach, Rapid Prototyp. J. 16, 450 (2010).

    Article  Google Scholar 

  4. P.A. Kobryn and S.L. Semiatin, JOM 53, 40 (2001).

    Article  Google Scholar 

  5. T. Ahmed and H.J. Rack, Mater. Sci. Eng. A 243, 206 (1998).

    Article  Google Scholar 

  6. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, Metall. Mater. Trans. A 41A, 3422 (2010).

    Article  Google Scholar 

  7. M. Simonelli, Y.Y. Tse, and C. Tuck, Metall. Mater. Trans. A 45A, 2863 (2014).

    Article  Google Scholar 

  8. B. Vrancken, L. Thijs, J.P. Kruth, and J. Van Humbeeck, J. Alloy Compd. 541, 177 (2012).

    Article  Google Scholar 

  9. T. Vilaro, C. Colin, and J.D. Bartout, Metall. Mater. Trans. A 42A, 3190 (2011).

    Article  Google Scholar 

  10. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Acta Mater. 85, 74 (2015).

    Article  Google Scholar 

  11. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, J. Mech. Behav. Biomed. 2, 20 (2009).

    Article  Google Scholar 

  12. M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Materials Park, OH: ASM International, 2000).

    Google Scholar 

  13. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Mater. Charact. 60, 96 (2009).

    Article  Google Scholar 

  14. H.K. Rafi, N.V. Karthik, H.J. Gong, T.L. Starr, and B.E. Stucker, J. Mater. Eng. Perform. 22, 3872 (2013).

    Article  Google Scholar 

  15. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res. 17, 5 (2002).

    Article  Google Scholar 

  16. N.B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials (New York: Springer, 2008), pp. 40–43.

    Google Scholar 

  17. M.T.C. Chow, E.V. Bordatchev, and G.K. Knopf, Int. J. Adv. Manuf. Technol. 67, 2607 (2013).

    Article  Google Scholar 

  18. H.E. Boyer, Atlas of Stress-Strain Curves, 2nd ed. (Materials Park, OH: ASM International, 2002).

    Google Scholar 

  19. M.J. Couper, A.E. Neeson, and J.R. Griffiths, Fatigue Fract. Eng. M. 13, 213 (1990).

    Article  Google Scholar 

  20. Y.X. Gao, J.Z. Yi, P.D. Lee, and T.C. Lindley, Fatigue Fract. Eng. M 27, 559 (2004).

    Article  Google Scholar 

  21. Y. Lu, F. Taheri, M.A. Gharghouri, and H.P. Han, J. Alloy Compd. 470, 202 (2009).

    Article  Google Scholar 

  22. Z. Xu, W. Wen, and T. Zhai, Metall. Mater. Trans. A 43A, 2763 (2012).

    Article  Google Scholar 

  23. T. Osada and H. Miura, Int. J. Powder Metall. 50, 25 (2014).

    Google Scholar 

  24. T. Saito and T. Furuta, U.S. patent 5,409, 518 (1991).

Download references

Acknowledgements

This study is funded by the Australian Research Council (ARC) through the Discovery Project Grant of DP150104719 and the SAMME Emerging Researcher Seed Fund of RMIT University. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at RMIT University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Xu or M. Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Sun, S., Elambasseril, J. et al. Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties. JOM 67, 668–673 (2015). https://doi.org/10.1007/s11837-015-1297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1297-8

Keywords

Navigation