Skip to main content
Log in

Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We present recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system. Here, two steel types are addressed. The first one is a class of low-density twinning-induced plasticity or single phase austenitic TWIP (SIMPLEX) steels with 25–30 wt.% Mn and <4–5 wt.% Al or even <8 wt.% Al when naturally aged. The second one is a class of κ-carbide strengthened austenitic steels with even higher Al content. Here, κ-carbides form either at 500–600°C or even during quenching for >10 wt.% Al. Three topics are addressed in more detail, namely, the combinatorial bulk high-throughput design of a wide range of corresponding alloy variants, the development of microstructure–property relations for such steels, and their susceptibility to hydrogen embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.G. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Acta Mater. 51, 2611 (2003).

    Article  Google Scholar 

  2. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mater. Sci. Eng. A 500, 196 (2009).

    Article  Google Scholar 

  3. F.G. Caballero and H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004).

    Article  Google Scholar 

  4. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Acta Mater. 59, 658 (2011).

    Article  Google Scholar 

  5. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Mater. Sci. Eng. A 441, 1 (2006).

    Article  Google Scholar 

  6. B.C. De Cooman, O. Kwon, and K.G. Chin, J. Mater. Sci. Technol. 28, 513 (2012).

    Article  Google Scholar 

  7. M. Calcagnotto, D. Ponge, and D. Raabe, ISIJ Int. 48, 1096 (2008).

    Article  Google Scholar 

  8. R. Song, D. Ponge, and D. Raabe, Acta Mater. 53, 4881 (2005).

    Article  Google Scholar 

  9. Y. Sakuma, O. Matsumura, and O. Akisue, ISIJ Int. 31, 1348 (1991).

    Article  Google Scholar 

  10. B.C. De Cooman and J.G. Speer, Steel Res. Int. 77, 634 (2006).

    Google Scholar 

  11. Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe, Acta Mater. 65, 215 (2014).

    Article  Google Scholar 

  12. F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mawella, D.G. Jones, and P. Brown, Mater. Sci. Technol. 17, 517 (2001).

    Article  Google Scholar 

  13. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Acta Mater. 61, 6132 (2013).

    Article  Google Scholar 

  14. D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Scripta Mater. 60, 1141 (2009).

    Article  Google Scholar 

  15. L. Yuan, D. Ponge, J. Wittig, P.P. Choi, J.A. Jiminez, and D. Raabe, Acta Mater. 60, 2790 (2012).

    Article  Google Scholar 

  16. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, Int. J. Plast. 16, 1391 (2000).

    Article  MATH  Google Scholar 

  17. G. Frommeyer, U. Brüx, and P. Neumann, ISIJ Int. 43, 438 (2003).

    Article  Google Scholar 

  18. G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).

    Google Scholar 

  19. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).

    Article  Google Scholar 

  20. A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck, Metall. Mater. Trans. A 43, 1688 (2012).

    Article  Google Scholar 

  21. J.E. Jin and Y.K. Lee, Mater. Sci. Eng. A 527, 157 (2009).

    Article  Google Scholar 

  22. J.K. Kim, L. Chen, H.S. Kim, S.K. Kim, Y. Estrin, and B.C. Cooman, Metall. Mater. Trans. A 40, 3147 (2009).

    Article  Google Scholar 

  23. S. Curtze and V.T. Kuokkala, Acta Mater. 58, 5129 (2010).

    Article  Google Scholar 

  24. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Mater. Sci. Eng. A 527, 3552 (2010).

    Article  Google Scholar 

  25. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, Scripta Mater. 63, 961 (2010).

    Article  Google Scholar 

  26. O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).

    Article  Google Scholar 

  27. H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. Cooman, and S.K. Kim, Acta Mater. 59, 7787 (2011).

    Article  Google Scholar 

  28. H.K. Yang, Z.J. Zhang, and Z.F. Zhang, Scripta Mater. 68, 992 (2013).

    Article  Google Scholar 

  29. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mater. Sci. Eng. A 500, 196 (2009).

    Article  Google Scholar 

  30. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, JOM 65, 1229 (2013).

    Article  Google Scholar 

  31. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Scripta Mater. 61, 737 (2009).

    Article  Google Scholar 

  32. I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 66, 992 (2012).

    Article  Google Scholar 

  33. I. Gutierrez-Urrutia and D. Raabe, Acta Mater. 59, 6449 (2011).

    Article  Google Scholar 

  34. I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 66, 343 (2012).

    Article  Google Scholar 

  35. S. Reeh, D. Music, T. Gebhardt, M. Kasprzak, T. Jäpel, S. Zaefferer, D. Raabe, S. Richter, A. Schwedt, J. Mayer, B. Wietbrock, G. Hirt, and J.M. Schneider, Acta Mater. 60, 6025 (2012).

    Article  Google Scholar 

  36. H. Kim, D.-W. Suh, and N.J. Kim, Sci. Technol. Adv. Mater. 14, 014205 (2013).

    Article  Google Scholar 

  37. G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).

    Google Scholar 

  38. J.D. Yoo and K.-T. Park, Mater. Sci. Eng. A 496, 417 (2008).

    Article  Google Scholar 

  39. K.M. Chang, C.G. Chao, and T.F. Liu, Scripta Mater. 63, 162 (2010).

    Article  Google Scholar 

  40. K. Choi, C.-H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.-T. Park, and J. Kim, Scripta Mater. 63, 1028 (2010).

    Article  Google Scholar 

  41. I. Gutierrez-Urrutia and D. Raabe, Acta Mater. 60, 5791 (2012).

    Article  Google Scholar 

  42. S.Y. Han, S.Y. Shin, H.-J. Lee, B.-J. Lee, S. Lee, N.J. Kim, and J.-H. Kwak, Metall. Mater. Trans. A 43A, 843 (2012).

    Article  Google Scholar 

  43. I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 68, 343 (2013).

    Article  Google Scholar 

  44. Y. Kimura, K. Handa, H. Hayashi, and Y. Mishima, Intermetallics 12, 607 (2004).

    Article  Google Scholar 

  45. J.-B. Seol, D. Raabe, P. Choi, H.-S. Park, J.-H. Kwak, and C.-G. Park, Scripta Mater. 68, 348 (2013).

    Article  Google Scholar 

  46. C.Y. Chao, C.N. Hwang, and T.F. Liu, Scripta Metall. Mater. 28, 109 (1993).

    Article  Google Scholar 

  47. C.N. Hwang, C.Y. Chao, and T.F. Liu, Scripta Metall. Mater. 28, 263 (1993).

    Article  Google Scholar 

  48. I. Gutierrez-Urrutia and D. Raabe, Mater. Sci. Technol. 30, 1099 (2014).

  49. H. Springer and D. Raabe, Acta Mater. 60, 4950 (2012).

    Article  Google Scholar 

  50. D.R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater. 61, 494 (2013).

    Article  Google Scholar 

  51. F. Roters, D. Raabe, and G. Gottstein, Acta Mater. 48, 4181 (2000).

    Article  Google Scholar 

  52. H. Mecking and U.F. Kocks, Acta Metall. 29, 1865 (1981).

    Article  Google Scholar 

  53. U.F. Kocks, A.S. Argon, and M.F. Ashby, Prog. Mater Sci. 19, 1 (1975).

    Article  Google Scholar 

  54. R.L. Fullman, Trans. AIME. 197, 447 (1953).

    Google Scholar 

  55. S. Mahajan and G.Y. Chin, Acta Metall. 21, 1353 (1973).

    Article  Google Scholar 

  56. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40A, 3076 (2009).

    Article  Google Scholar 

  57. M. Koyama, E. Akiyama, T. Sawaguchi, D. Raabe, and K. Tsuzaki, Scripta Mater. 66, 459 (2012).

    Article  Google Scholar 

  58. M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe, Acta Mater. 61, 4607 (2013).

    Article  Google Scholar 

  59. M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, and D. Raabe, Int. J. Hydrog. Energy 39, 4634 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to the late Professor Georg Frommeyer for his guidance in designing low-density steels. Some of the data shown in Figs. 1 and 2 stem from his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raabe, D., Springer, H., Gutierrez-Urrutia, I. et al. Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels. JOM 66, 1845–1856 (2014). https://doi.org/10.1007/s11837-014-1032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1032-x

Keywords

Navigation